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Abstract—Heart disease has become a major global health con-
cern that is affecting millions of people worldwide. The situation
is particularly critical in developing countries where the access to
medical facilities is limited. This barrier to health care leads to
increased fatalities from heart disease. Early diagnosis of cardio-
vascular conditions can be lifesaving. However, personal medical-
grade equipment can be expensive and not easily accessible for
people living in these areas. It is important to expand the same
level of medical care to these communities at an affordable price.
Our research aims to investigate the performance of a machine
learning model on a low-cost embedded system. This study will
evaluate the accuracy, run time, and overall performance of the
model in diagnosing cardiovascular diseases. The results will help
us determine the feasibility of using machine learning models for
classifying cardiovascular disease in low-cost embedded systems.
A selected machine learning model has been trained, modified,
and compiled into the embedded system. The model returns the
classification results based on preprocessed input data. Multiple
metrics are collected to measure the performance of the model
and the embedded system. The preliminary results are promising
with accuracy levels similar to the original model. If these results
hold up in multiple trials, it is expected that the machine learning
model for classifying cardiovascular diseases on the embedded
system will be practical and useful in extending affordable
medical care to developing countries.

Index Terms—neural networks, machine learning, diagnosis,
electrocardiogram

I. INTRODUCTION

The World health organization (WHO) estimates that car-
diovascular diseases (CVDs) have been the leading fatal
disease worldwide that contributes to 17.9 million fatalities
annually [1]. CVDs may lead to potentially life-threatening
complications if they are not diagnosed early or left untreated.
In developing countries, people often have limited access
to medical facilities, doctors, and primary care compared to
developed countries [1]. The doctor-to-patient ratio in devel-
oping countries is significantly lower compared to developed
countries. In addition to the limited access to medical care,
the financial situation is also a barrier to a healthy life. Daily
minimum income in developing countries is significantly low
compared to developed countries. Furthermore, lifestyle and
diet contribute to a higher chance of getting CVDs in Asian
countries [2], [3].

An affordable and accurate wearable device for the classifi-
cation of heart diseases can provide a promising alternative for

979-8-3503-0064-2/23/$31.00 ©2023 IEEE

Jacob Couch
Applied Physics Laboratory
Johns Hopkins University
Laurel, MD 20723
jacob.couch@jhuapl.edu

Kevin Molloy
Computer Science
James Madison University
Harrisonburg, VA 22807
molloykp@jmu.edu

individuals who have limited access to expensive healthcare
technologies. With early detection of heart disease, individuals
can seek timely medical intervention and prevent potentially
catastrophic outcomes. Therefore, the development and im-
plementation of affordable wearable devices for the accurate
classification of heart diseases can have significant implica-
tions for public health. While there are multiple approaches to
diagnosing heart disease, our approach will focus on utilizing
powerful deep learning methods to accurately detect instances
of CVDs. More specifically, we will utilize convolutional
neural networks (CNN) to detect arterial fibrillation (AF),
an indicator of coronary artery disease (CAD), a specific
disease in the CVD family. To perform this detection we will
leverage the ability to transform electrocardiography (ECG)
measurements into “images” that can be easily classified by
CNNs. While these CNN models are often resource intensive
and developed on traditional desktop computers, to show that
our work could be deployed in the developing world, we
will explore how these CNN models perform after being
implemented on a low-cost embedded system. Notably we will
examine the impact on classification accuracy and run-time
performance arterial fibrillation detection.

Overall, our research results indicate that the CNN model
is able to classify CAD on the low-cost embedded system
with near 80% accuracy. Although we witnessed increased
classification time compared to traditional desktop processing,
we have proven that the model can perform the complex
computation within the constraints of an embedded system
with little to no loss of accuracy. Throughout this paper, we
will discuss future research areas, opportunities and expected
challenges for future researchers.

The remainder of this document is organized as follows:
Section II discusses related work cardiac health with a specific
focus on the prevalence of CVD in developing countries and
highlights the critical need for an effective and affordable
solution to address cardiac disease in developing countries.
Section III outlines our research methodology and decisions
for each component of the system’s development. Section IV
discusses the analysis of the data collected and the evaluation
of the developed model’s performance. Lastly, Section V
summarizes our work and provides suggestions for future
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Fig. 1: ECG beat segment for Sinus Rhythm [6]

researchers.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the utility of ECGs, the preva-
lence of CVDs in developing countries and the limited access
to medical facility they experience, and related work in auto-
mated classification of heart disease.

A. Overview of Cardiovascular Disease and Detection

Cardiovascular diseases are a group of heart disorders that
affect the blood circulation in the body [1]. They are one of
the leading causes of death globally. CVDs contains a wide
variety of conditions, including but not limited to coronary
heart disease, stroke, peripheral arterial disease, and aortic
disease. These diseases can lead to serious, life-threatening
complications if they are not diagnosed in an early manner or
treated appropriately.

Generally, there exists a correlation between a person having
coronary artery disease and the presence of atrial fibrilla-
tion(AF) [4]. AF is an irregular heart rhythm that can be easily
detected on ECG waves. If a person has AF, there is a higher
chance that the person has CAD [4]. A typical ECG wave is
shown in Figure 1 where individual components of the heart
beat are annotated as P, Q, R, S, T waves. From the ECG
waves, we can find out an irregular and rapid heartbeat and an
irregular rhythm within RR interval, the time between R peaks
of two consecutive beats, but with no discernible P waves. The
diagnosis of AF on ECG can be confirmed by observing this
pattern on any ECG leads. In some cases, a longer monitoring
period may be necessary to capture intermittent episodes of
AF [5].

B. Prevalence of Cardiovascular Disease in the Developing
World

Undiagnosed or untreated CVDs can result in severe and
life-threatening complications such as heart attacks and even
sudden death [7]. Access to medical facilities and healthcare
professionals is a challenge for individuals in developing

countries [8]. This is mainly due to the fact that the doctor-
to-patient ratio is significantly lower than that of developed
countries as shown in Table I. Data from the 2018 City Life
Survey indicates that 37% people living in Yangon, the largest
former capital city in Myanmar with a population of 5 million,
do not have enough financial power to pay for an unexpected
medical emergency [9]. 44% of people living in Yangon also
find it hard to afford health care along with 33% in Mandalay
and 48% in Mawlamyine, which are capital cities in different
states.

TABLE I: Average Physician to patient ratio in the developed
countries and developing countries [10] [11] [12]

Country Physician-patient ratio (per 1000) | Year
United States | 2.95 2016
United States | 2.604 2018
France 6.53 2018
Thailand 0.92 2019
Vietnam 0.83 2016
Myanmar 0.7 2018
Myanmar 0.37 2019

In addition, the financial situation in developing countries
presents a further barrier to obtaining medical care. The
daily minimum income is much lower than in developed
countries. A report from the Myanmar ministry of health stated
the average pay for office staff as 150,000 Myanmar Kyats
(MMK) (about 90 USD) per month [13]. An online informal
survey was conducted to assess low-income to middle income
people willingness to spend on the medical device for regular
screening. It is found that the average they are willing to spend
is about 80,000 MMK to 100,000 MMK (about 40 to 60 USD)
[14]. Research conducted in 2017 indicated that the cost for a
hospital visit can range approximately from 28,000 MMK to
1,961,806 MMK (27 USD to 1900 USD) [13].

Research shows that individuals in Myanmar are partic-
ularly susceptible to coronary artery disease and rheumatic
disease [15]. While the latter requires medical professionals
for diagnosis, coronary artery disease can be detected via elec-
trocardiogram (ECG) and diagnosed with machine learning
algorithms on wearable devices. Thus, the development of a
low-cost smart device that enables early diagnosis of coronary
artery disease (CAD) has the potential to save millions of lives
in developing countries. Early detection and treatment can be
life-saving for individuals in these regions.

C. Related Work in Automated Detection of CVD

In recent years, there have been numerous attempts in uti-
lizing machine learning algorithms for the diagnosis of CVDs
on wearable devices [16]. Many machine learning algorithms
have been developed and tested, with some demonstrating
high levels of accuracy in classifying CVDs. For example,
some algorithms have shown accuracy rates of up to 92% in
detecting CVDs [17].

While our approach utilizes convolutional neural networks,
there are other machine learning techniques that are used in
CVD classification. One approach employs a support vector
machine (SVM) to clasify for atherosclerosis and early CAD
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Fig. 2: Model Implementation Pipeline Showing the Progression from Desktop to Embedded System Implementation

detection using ECG signal from a single lead [18]. This
algorithm has an overall accuracy of 88% after extracting the
features and filtering the signals. Another approach is to use
machine learning methods to analyze the features extracted
from single lead ECG wave which are RR and QT interval
time-series and ST-T segment waveforms [19]. RR interval
is the time between R peaks of two consecutive beats. QT
segments is the interval between the start of Q wave and the
end of T wave. ST-T interval is the time between start of S
wave to the end of T wave as seen in Figure 1 This approach
has achieved an accuracy of 96% with 2 combined classifiers.

III. METHODOLOGY AND EXPERIMENTAL DESIGN

In this section we outline the major design decisions in our
system, the development process and tools used, and the data
collected in our experiments.

A. Major Design Decisions

When implementing our CVD detection pipeline there are
several interrelated decisions to make. First is to find an
example ECG dataset recorded with labels so a machine
learning model can be trained. Second, the selected model
must perform suitably well on that data and be reliable in a
software framework to test its performance. Finally, as our goal
is to understand the embedded system’s performance, a target
platform must be selected that can implement the machine
learning algorithm. We discuss these factors in the remainder
of the section.

1) Datasets: PubMed research in 2017 recorded 3.046
million new instances of atrial fibrillation globally, increas-
ing 33% in the last 20 years [2]. Currently the worldwide
prevalence of atrial fibrillation is estimated to be around
37.6 million cases, which is only 0.51% of the worldwide
population. We selected a dataset that includes a variety of
ECG data, including about 8,000 recordings of normal waves,
atrial fibrillation, unclassified recordings, and other cardiac
waves from the short single lead ECG Recording of the
2017 PhysioNet Cardiology Challenge [20]. This ECG dataset
contains 5076 normal waves, 2415 atrial fibrillation (AF), 279
unclassified and 758 others recordings. Unclassified recording
means that the ECG waves cannot be classified into any known
ECG categories. These are mostly noise and a doctor would

order a new ECG recording. Other means the ECG could be
any cardiac waves other than normal, atrial fibrillation or noise.

2) Classification Algorithm: We will select an algorithm
that can classify atrial fibrillation from single lead ECG
records. We will reject algorithms that are developed for 12
lead ECG data since our focus of the research is to develop a
system that utilize single lead ECG module. We chose single
lead ECG since the state of the art device in commercial
wearable device only has single lead ECG ability such as
Apple Watch. At this time of research, we will not consider
algorithms that uses previous stored data such as k-nearest
neighbors (KNN) due to computational resource limitations
on the embedded system. Thus, we selected an machine
learning algorithm from this paper "Convolutional Recurrent
Neural Networks for Electrocardiogram Classification” [21].
The algorithm contains a preprocessing step to filter, denoise,
and standardize the data, then convert it into spectrogram
images for classification. The raw ECG data is from Physionet
Computing in Cardiology Challenge 2017 [20].

3) Machine Learning Frameworks: When selecting a ma-
chine learning framework, we considered multiple factors,
such as support for desktop and embedded implementation,
compatibility with our embedded system, and support for our
machine learning model. We considered several frameworks,
including TensorFlow and TensorFlow Lite, PyTorch, PyTorch
Mobile, and ARM CMSIS-NN. We selected TensorFlow and
TensorFlow Lite for Microcontrollers since they offer sup-
port for complex machine learning functions and officially
support the Arduino and ESP32 frameworks [22]. Tensor-
Flow also provides end-to-end support for both desktop-level
and microcontroller-level machine learning models, reducing
the implementation time and developmental errors. Although
TensorFlow Lite for Microcontroller has some limitations, it
supports most of the operations needed for our research.

4) Embedded Systems: During the implementation of our
machine learning model, on the first development embedded
system, we discovered that the model size was approximately
2 MegaBytes (MB); thus it would require at least 3MB of
RAM for computation and to store the model and ECG sample
data. Therefore, for our research purposes, we decided to use a
low-cost embedded system with sufficient RAM necessary. We
selected the “ESP32 S3 Devkit C1* board as our embedded
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system due to several reasons as TensorFlow offers official
support for implementing machine learning models on the
ESP32 and ESP32 boards offer sufficient memory, with up to
8MB of RAM, allowing for us to test a wide range of machine
learning models. Furthermore, the ESP32 supports 32-bit
floating-point calculations, which are essential for machine
learning inferences. For embedded systems developmental
frameworks, this work used the Platform I/O and ESP-IDF
frameworks [23], [24].

B. Development Process and Tools

Collecting together the design choices in Section III-A,
Figure 2 shows the set of software frameworks and hardware
platforms used to implement our system. The section will
discuss the particulars of that pipeline and how data flows
from one element to another.

Construction of the machine learning model begins on the
desktop. The raw ECG data from Physionet [20] is converted
into a spectrogram as a pre-processing step based upon the
model in the paper [21]. This CNN model is then trained on
the dataset (with 70-20-10 split where 70% of data is used for
training, 20% is used for validation and 10% for testing) while
hyperparameters (number of convolutional layers, functions)
are tuned to achieve the best model performance in terms
of accuracy and F1 score. The desktop development work is
performed using the TensorFlow framework using the Python
language.

Once the model is trained, we save it as a full-sized
TensorFlow model and convert it into a TensorFlow Lite
model. Then, we serialize the TensorFlow Lite model into
a Flatbuffer C++ byte array or a TensorFlow Lite model
for microcontrollers [25], which is loaded into the embedded
system using the Platform I/O and ESP-IDF frameworks. On
the embedded system, the model is reassembled from the
Flatbuffer byte array. After the model is loaded, the ECG
spectrogram can be sent to the embedded system over a serial
port to perform classification.

C. Experimental Setup

In our research, we are interested to learn the accuracy trend,
inference time, and model complexity of our machine learning
model on the embedded system and on the desktop computer.
To achieve this, we take a two-pronged approach. First, to
save time on preprocessing data in the embedded system, we
preprocess the testing data on the computer, which can process
multiple ECG testing records in less than a second. The testing
data is a separate dataset that has not been seen by the model
during training. Each testing data spectrogram is then passed
down to the embedded system through the serial commu-
nication channel between the host computer and the board.
The embedded system then classifies each spectrogram and
reports the results back to the host computer, where they are
aggregated. The data for each record includes the classification
result on the embedded system and the classification time and
the data transport time. To validate the pipeline that includes
the embedded system, another experiment is performed where

all the processing is performed on a single desktop computer.
We also run the full-sized model and the TensorFlow lite
model on the computer to classify the same testing dataset,
and their metrics are collected. We test multiple variants of
the same models to see the trend in performance metrics such
as accuracy, classification time and model size.

IV. DISCUSSION AND RESULTS
A. Results

As described in Section III-B, multiple iterations on the
CNN models were created to tune and identify the best result
on our target. Table II shows the modifications made to
different models during training to achieve similar accuracy
to the source work [21]. Each model is named sequentially
on model version with changes to the number of layers,
blocks, and other modifications to the CNN architecture. The
other columns indicate the accuracy from each model on the
“Desktop” results from the TensorFlow framework. Overall,
the best model was determined to be CNN_ECG_10 with an
accuracy of 81.5% and F1 score of 81.5%. The confusion
matrix for this model shown in Figure 3 indicates that the
current trained model can classify “Other” and “Noise* very
well. While the model shows moderate classification perfor-
mance for “Normal* and “Atrial fibrillation®, it is occasionally
prone to misclassification between these two classes. We see
this trend throughout the different model training. We conclude
that some data may be very similar to differentiate between
two classes. After identifying the best desktop model, we
implemented that machine learning model to the embedded
system following the process in Section III-B.

The embedded system implementation was equivalent in
accuracy when classifying the dataset, with an accuracy and F1
of 80.8% and 80.9%, respectively. However, run-time perfor-
mance was significantly impacted. While the desktop model
can perform many classifications per second, the embedded
system could only perform a classification every ~2 minutes.
While a slower classification time was expected, this much
lower speed will have an impact on the overall suitability of
the embedded system for real-world use.

TABLE II: Model Modifications Table

Name Layers Block | Modifications Accuracy Fl1
cnn_ecg_1 depth 4 | block 1 25.0 10.0
cnn_ecg_2 | depth 2 | block 4 | no mask layer 71.9 72.3
cnn_ecg_3 | depth 4 | block 2 73.2 73.5
cnn_ecg_4 depth 2 | block 2 48.6 48.6
cnn_ecg_5 depth 1 | block 4 59.2 58.9
cnn_ecg_6 depth 1 | block 3 45.1 45.1
cnn_ecg_7 depth 3 | block 1 43.7 40.2
cnn_ecg_8 depth 2 | block 3 | no mask, no 25.0 10.0

means layer
cnn_ecg_9 | depth 2 | block 4 | no mask layer 76.3 76.2
cnn_ecg_10 | depth 2 | block 4 | no mask layer, 81.5 81.5
balanced data

B. Discussion

In this section we discuss the implementations of our re-
sults and determine whether our implementation has sufficient
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Fig. 3: Confusion Matrix of Best Performing Model:
CNN_ECG_10

accuracy and run-time performance to operate effectively as a
diagnostic tool in developing countries.

1) Accuracy: There is no single standard or guideline
for the minimum required accuracy of a machine learning
model for classifying heart diseases, as it may depend on
various factors such as the severity and complexity of the
diseases being classified, the intended use of the model, and
the acceptable level of false positives and false negatives.
However, studies in the Bayoumy paper have shown that many
research models achieve an accuracy of around 80-90% [16].
Our approach barely achieves this threshold with an 80%
classification accuracy on the embedded system as shown
in Tablell.

While our overall accuracy is near this threshold, that metric
is across all classes in the dataset, and given our mission to be
a diagnostic tool, our performance detecting and rejecting AF
should be explored in more detail. Specifically, we will exam-
ine our sensitivity, which indicates our true positive rate which
is our success at correctly identifying AF, and our specificity,
which indicates our true negative rate of successfully rejecting
individuals not experiencing AF. These numbers are important
because accurate detection of AF avoids unnecessary medical
costs for users if they are alerted of AF when they do not have
the condition. Conversely, it is important to alert users who
have the condition for prompt medical attention.

We currently achieved a true positive rate (sensitivity) of
70.5% for the AF class and a true negative rate (specificity)
of 91.4% to AF class. While we have high true positive rate,
we are still on the lower end for the true positive rate. Ideally,
we should achieve sensitivity of 100%. With current low true
positive, if a user has an actual AF episode, the model may
miss it or wrongly classify the event. Even with prolong
continuous use of the device and assuming we captured the AF
event during the ECG recording, we only have 70% confidence
that the result is correct. There may also a condition where
we may not captured the AF episode during 60 seconds ECG
recording window due to the uncertainty of AF events and AF

stages in different person [26].

In attempting to improve our accuracy, we tried several ap-
proaches. Firstly, we developed our own custom loss function
that penalizes wrong class classification more heavily. We hy-
pothesized that this would lead to more accurate classification
results. Additionally, we reduced the problem from multi-class
classification to binary classification (i.e., predicting whether
or not heart disease is present). Next, we experimented with
adding or reducing the model’s layers to understand if the clas-
sification results may improve within the embedded system’s
resource limitations. However, despite our best efforts, we
did not observe any significant improvements in the model’s
accuracy. Based on our analysis of these experiments, we
believe that the limited size and scarcity of our training data set
may have been the bottleneck that prevented us from achieving
greater accuracy in the model. It is possible that a larger
and more diverse training data set would have enabled us to
discover better modifications to the model that would have
improved its accuracy.

2) Run-time Performance: We noticed the increase infer-
ence time when the model classify the data. It is not ideal for
daily use. Currently, the model takes 0.8 seconds to classify
556 recordings on the desktop computer, however the same
model will take about 61200 seconds on the embedded system.
This implies that a single 60 seconds ECG record takes nearly
2 minutes to process. If the AF events happens during the
processing time or classification time, a user may not know
the actual result. Thus, we can only sample one-third of
the time the device is operational. Combined with our lower
accuracy, this poor sampling rate negatively affects the chances
of correctly capturing, and subsequently identifying, an AF
event. As we are missing data two-third of the time, our true
positive will be reduced as the AF event may not be captured
in the recording.

Given the very long inference times experienced, we con-
ducted a series of experiments to determine what elements
of the microprocessor caused this drop in performance.. We
considered two main areas: the impact of floating point cal-
culations and the placement of data in internal or external
memory. No impact was noted on the difference in float
point instructions. However, there was a significant impact
on whether the TensorFlow Lite model memory was placed
in the internal or external memory of the ESP32 system.
The bottleneck between the internal CPU and external RAM
caused the model to experience a long waiting time when
accessing data in the tensor memory. We delved deeper into
the bottleneck and found out that the slower clock speed on
the memory may be a factor. The CPU core’s clock speed
is approximately 240 MHz, while the external RAM’s clock
speed is only 40 MHz. Consequently, the CPU may have
already completed its calculation, but it could be waiting
for new data to arrive through the data bus. To mitigate the
longer inference times, we investigate various optimization
techniques for improving the architecture of the development
used in our research. These techniques include optimizing the

170



2023 Systems and Information Engineering Design Symposium (SIEDS)

data pipeline and employing memory allocation strategies that
balance the data’s proximity to the CPU core and external
RAM, ensuring that the data is easily accessible to the model
without causing any delays. We will need more robust data to
make a conclusion if this will improve the overall performance
of the system.

V. CONCLUSIONS AND FUTURE WORK

Our research examined the performance of a machine learn-
ing model for detecting CVDs on an embedded system. We
discovered that the accuracy of the model remained consistent
across different platforms. However, we observed a decrease
in the runtime performance of the model on the embedded
system. We may see the changes in the runtime performance
if we implement the preprocessing algorithm on the board.
We attribute this long inference time to the limitations of the
embedded system, which we expect to improve as low-cost
microcontroller technology advances. Additionally, we noticed
the limitations of the TensorFlow framework on embedded
systems, but we anticipate that it will support more operations
in the future. We used a very limited dataset to train the
model which is also used by the selected model developer.
This limited dataset may also be a bottleneck for increasing
accuracy of the model.

Going forward, future researchers should consider the fol-
lowing suggestions. For machine learning researchers, there
are more direct approaches to analyze CAD such as analyzing
the ST-T segment changes for each heart beat using CNN,
recurrent neural network (RNN) or other applicable model.
The simpler the preprocessed data to classify, the more ac-
curate and faster it will be on the embedded system. It is
also suggested to use larger and more diverse dataset to train
the model such as PTB-XL dataset [27]. For engineers, it is
suggested to implement the hardware level ECG data recorder
and preprocessor to improve the total time for each instances.
For production of low-cost devices, it is also needed to record
the total power consumption for daily uses and optimize
accordingly. Overall, this work has shown it is feasible to
implement a machine learning model on the embedded system
at little to no cost of accuracy loss. When these machine
learning driven low-cost devices are into mass-productions,
it has a potential to save countless lives to people all over the
world.
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