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Abstract— As automation is becoming more prevalent across 

everything from military and healthcare settings to everyday 
household items, it is necessary to understand the nature of 
human interactions with these systems. One critically important 
element of these interactions is user trust, as it can predict 
automated systems' safe and effective use. Past research has 
evaluated individuals' trust in automation through a host of 
different assessment techniques such as self-report, 
physiological, and behavioral measures. However, to date, there 
has been little evaluation of the convergence across these 
measures in a real-world environment. Convergence across 
measures is a useful tool in understanding the mechanisms by 
which a cognitive construct is impacted and providing greater 
confidence that any single measure is evaluating what it 
purports to measure. The present study used an autonomous 
golf cart that drove participants to different locations around 
the campus of James Madison University while a camera 
recorded them. In addition, participants were given the AICP-
R and TOAST to evaluate their complacency potential and 
trust, respectively. Researchers coded videos for 
verification/checking behaviors (i.e., participants looked at or 
interacted with the GUI used to control the cart) and nervous 
behaviors (i.e., bracing, fidgeting, etc.).  Additionally, 
environmental 'obstacles' such as pedestrians, food-delivery 
robots, and construction were also coded for by watching a 
front-facing camera. Results indicate a disconnect between the 
self-report and behavioral measures evaluating trust. However, 
there was a relationship between the coded nervous behaviors 
and verification behaviors and a relationship between those and 
the presence of obstacles. This lack of convergence across 
measures indicates a need for future research to understand 
whether this non-convergence represents shortcomings with the 
measures themselves, the existing definition of trust as a 
construct, or perhaps indicates that there is a nuance that can 
be afforded by some measures over another. 

Keywords—Automation, Trust, Convergence, Complacency, 
Verification, Autonomous Vehicles 

I. INTRODUCTION  
Given recent advances and the rise in self-driving 

vehicles on roadways, it is essential to understand how 
individuals interact with these systems. Automation, in 
general, is present in everyday life and is used in settings 
such as healthcare, the military, aviation, and household 

items. As much as automation can reduce workload, 
increase productivity, and reduce costs, the increasing 
complexity of automation also presents unique challenges. 
The recent development of self-driving vehicles came with a 
cost [1]. In a fatal accident in 2016, a Tesla in “Autopilot” 
mode failed to apply the brakes when a tractor-trailer made 
a left turn in front of the Tesla [2]. In 2019, a Tesla going 60 
miles per hour slammed into a parked firetruck [3]. In these 
instances, it is reasonable to attribute user overtrust in the 
system to their failure to intervene appropriately before a 
disaster.   

Trust is a useful measure in that it serves as a predictor 
of a system's use, misuse, and disuse [4]. Trust is defined as 
"the attitude that an agent will help achieve an individual's 
goals in a situation characterized by uncertainty and 
vulnerability" [5]. The continued investigation of trust in 
human-automation interactions is critical for promoting safe 
interactions and enhancing human-machine team 
performance. When designing systems, trust must be 
calibrated rather than elevated. A user's trust in a system 
must correspond with the actual capabilities of that system. 
Overtrust refers to when the user's trust in the system is 
higher than the machine's actual capabilities [6][7]. Users 
who overtrust a system can be conditioned to become 
complacent and misuse the system, possibly leading to the 
loss of pricey equipment or human lives [4], [8].   

Complacency refers to monitoring automation with less 
vigilance or less frequently because of a greater level of 
trust in the system [9]. Oftentimes, operators who become 
complacent are influenced by automation biases [10] [11]. 
Users that expect automation to perform without error tend 
to place too much trust in the machine [12]. To offset 
overtrust and appropriately calibrate trust, trust dampening 
approaches such as providing timely warnings, requesting 
assistance, or conveying system limitations can be 
implemented to lower expectations when too much faith has 
been placed into the system [4] [13].  

On the other hand, undertrust refers to when the user's 
perception of the system's trustworthiness is lower than the 
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machine's actual capabilities [4]. Undertrust can lead to the 
disuse of a system [8], [14], [15]. In situations of undertrust, 
trust can be calibrated through trust repair strategies such as 
apologizing, denial, blaming, or gas-lighting [4], [16] [17]. 
When designing a system, keeping these approaches in mind 
will help calibrate trust within human-automation 
interactions.  

Ultimately, trust calibration is necessary for appropriate 
reliance on a system. However, to calibrate trust, there must 
be an accurate understanding of user trust. Previous research 
has evaluated individuals' trust in automation through 
different assessment techniques such as subjective self-
reports [18], [19], physiological [20], and behavioral 
measures [1], [15]. 

The remainder of the paper is organized as follows: 
Section II discusses the current state of the art of the 
autonomous golf cart used for our research study. Section III 
explains current measurement techniques used on 
autonomous systems. In section IV, we discuss the methods 
used in our research, including the number of participants, 
materials, procedures, and coding procedure. We follow 
with section V, explaining the results. Finally, we conclude 
the paper by discussing our research results and highlighting 
future work directions in section VI. 

II. OVERVIEW OF CURRENT AUTONOMOUS CART  
Our study uses an autonomous golf-cart prototype 

created by James Madison University Autonomous Golf 
Cart (JACart) team. As shown in Figure 1, the 
autonomously driven golf cart has several components: a 3D 
LiDAR, Zed cameras, hardware controller, UI control, and a 
laptop running Robot Operating System (ROS). This work 
is part of an effort to develop a prototype taxi system as a 
testbed for experimenting with features to improve 
accessibility and comfortability.  

FIGURE 1.    AUTONOMOUS VEHICLE CART USED  

 

III. CURRENT MEASUREMENT TECHNIQUES 
A. Self-Reports 

Self-reports are inherently subjective and easy to 
administer. These assessment techniques typically involve 
asking individuals a series of questions that relate to their 

perception of the system with which they were interacting. 
One of the most commonly used trust measures is the Trust 
in Automation Scale, which evaluates respondents' 
impression/perception of the system [18]. While this scale is 
widely used by the research community (cited over 1200 
times at the writing of this manuscript), evidence of positive 
biases producing ceiling effects [21] and insufficient 
reliability [18] raise concerns about its use. However, other 
scales have been developed which focus on minimizing 
administration biases while also reporting stronger 
psychometric properties making them a key candidate for 
use in individual differences studies (e.g., [22]). While self-
report measures are easy to administer, they rely on the 
individual's responses which may be faulty or inaccurate as 
they are subjective and may be impacted by any number of 
biases due to the scale construction or experimental 
demands [23]–[25]. There has been an interest in 
establishing behavioral indicators of trust. 
B. Behavioral  

Behavioral measures are collected during an individual’s 
interactions with a system. By collecting data during the 
interaction, trust assessments may be more accurate than 
subjective assessments that require a reflection after the 
interaction. Additionally, this behavioral approach to trust 
assessment allows for assessment in real time. This real-
time understanding of a user’s trust in a system can allow 
for a more rapid response from the system itself to help 
recalibrate the user’s trust. The use of behavioral measures 
is non-invasive and can therefore be used in a much more 
passive monitoring environment. Previous research has used 
behaviors such as verification [26], [27], intervention [15], 
[28], and secondary task engagement [29] as indicators of 
one’s trust. 

C. Convergence 
Convergence is the agreement among measures that 

assess a given construct. For instance, an experiment may 
use both subjective self-report and behavioral measures of 
trust to establish the level of agreement across those 
measures. One would anticipate that measures that assess 
the same construct should yield converging results, such that 
both the subjective self-report and behavioral data should 
show similar patterns of results. This approach of 
converging measures has historically been used to assess 
other cognitive constructs and evaluate the validity of a 
given measure [30]. When convergence is not evident across 
measures, this potentially indicates that the construct is 
being measured inadequately, or perhaps the construct's 
definition fails to account for nuance in the construct. The 
complex nature of measuring trust means that it is ripe for 
exploration into the degree of convergence across measures 
[16], [30].  

IV. METHODS 
Participants. Participants (N = 26) were recruited from 

an available participant pool at James Madison University 
(JMU), Harrisonburg, Virginia, USA.  
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Materials. This study used an EZ-Go Golf Cart, which 
was adapted to operate the carts’ brakes, accelerator, and 
steering autonomously [31], [32]. A Robot Operation 
System (ROS) program filters information of 3-D LiDAR 
(Velodyne Puck) to detect obstacles, defined routes, and the 
cart’s location. There is a graphical user interface (GUI) 
located inside the cart so that passengers can select 
destinations and potentially void operations if necessary. 
The GUI also provides a visual representation of the path 
from start to end. The Automation Induced Complacency 
Potential Rating (AICP-R) is used to evaluate the 
complacency potential of their interactions with automation. 
The AICP-R consists of two factors: alleviating workload 
and monitoring [6]. The Trust of Automated Systems Test 
(TOAST) assesses the individuals’ overall trust in 
understanding the system and the performance of 
automation [22].  

Procedures. Before beginning the experiment, 
participants are asked to read the informed, voluntary 
consent form and sign if they agree to participate. 
Participants were informed that this study aims to 
understand better passengers’ feelings of trust and reliability 
in autonomous vehicles. After participants provided consent, 
they were encouraged to ask any questions about the 
experiment. Participants were then given a tablet instructing 
them to complete the AICP-R. After the pre-ride survey was 
conducted, the experimenter fitted the participants with a 
pulse-oximeter; however, this physiological data was 
collected for another project and thus will not be analyzed 
here.   

Participants were shown the cart and asked to sit in the 
passenger seat of the golf cart while the researcher informed 
them of the GUI interface. They were informed about the 
different destinations (i.e., gym, café, clinic, mall, movie 
theater) or obstacles (i.e., food robots, pedestrians, cars, etc.) 
that they may encounter on campus during the ride. Prior to 
the ride, the researcher reminded participants that they 
should pretend that the experimenter was not there and 
would not generally intervene unless there was a safety 
issue. Following this explanation, participants were asked to 
begin a course from home to mall and then from mall to 
home. Once the cart returned home, participants were given 
the opportunity to select a different location for an 
additional ride. 

After the ride, a semi-structured interview was 
completed while the participant was in the cart, which 
allowed their responses to be recorded and later transcribed. 
The interview consisted of questions about the ride (i.e., 
stress, reliability, familiarity with autonomous vehicles, etc.) 
such as “Did you feel comfortable and/or at ease during the 
ride? If so, what made you feel that way?” Lastly, 
participants were given a tablet to complete the post-ride 
survey (TOAST). After the questionnaire was completed, 
the pulse oximeter was removed, and participants were 
thanked for their participation in the study. 

Coding Procedure. Researchers coded the videos 
independently by evaluating participants' actions and 
recording timestamps from the listed categories (i.e., 
obstacles, GUI interactions, and participants' behaviors) 
(Table 1). An event was considered to have occurred when 
at least two of the three coders recorded the event within 2 
seconds of each other, and at least 15 seconds since the last 
time there was a recorded event of that type. This was 
important to guarantee agreement among researchers while 
also preventing over-coding similar events that were 
recorded by researchers. 

The behaviors selected as indications of our 
representation of trust or distrust within this study align with 
previous research, which defines these actions as 
displacement behaviors included within the Ethological 
Coding System for Interviewers (ECSI) [33]. These 
displacement behaviors signify feelings of stress and 
anxiety, which may betray what individuals report in self-
report measures, coined by the term emotional leakage [33], 
[34]. For example, research studies have shown that 
displacement behaviors result from individuals experiencing 
anxiety or stress [35]–[37]. Behaviors such as touching 
one’s face or fidgeting with hands fall within the ECSI and 
may further serve to demonstrate anxiety that may not be 
reported by the individual, which could be indicative of 
his/her trust.  

TABLE I.  OBSTACLES, BEHAVIORS, AND INTERACTIONS  
Coding Categories 

Obstacles GUI 
Interaction 

Participant 
Behaviors 

Participant 
Behaviors 

Cont. 

Food Robots Looking at 
GUI Bracing Laughing 

Pedestrians Interacting 
with GUI Glancing Interaction 

with phone 

Cars  Darting eyes Noticeable 
gasp 

Curves in the 
road  Noticeable 

exhale Excitement 

Construction  Joking around 
Interacting 

with 
pedestrians 

  Talking to self Fidgeting 
  Slouching Crossing legs 
  Nodding Touching face 

  Pointing Leaning 
forward 

  Smiling Messing with 
hands 

  Mouth 
movement Hair flip 
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V. RESULTS  
The statistical software JASP [38] was utilized to 

analyze the data to report frequentist statistics and Bayes 
Factors (BF10). A BF10 between 1-3 is classified as anecdotal, 
3-10 is moderate, 10-30 is strong, and > 30 is very strong 
evidence [39]. The advantage of using Bayesian statistics 
over frequentists is the ability to gain evidence favoring the 
null hypothesis and discriminate between the “absence of 
evidence” (i.e., inconclusive, or insignificant) or “evidence 
of absence” (i.e., support H0) [40]. Additionally, Bayesian 
analyses are more immune to issues of small sample sizes 
[39] 

Individuals had an average AICP-R score of 3.552 (SD = 
0.336) (out of 5), with an average of 4.024 (SD = 0.543) for 
alleviating workload and an average of 3.080 (SD = 0.370) 
for monitoring subscale. The average reported trust in the 
system on TOAST was 5.893 (SD = 0.466). The mean 
number of obstacles coded for every participant was 17.080 
(SD = 7.810), number of behaviors 23.240 (SD = 14.475), 
and glances/interactions with UI average to 17.760 (SD = 
7.865). There was no correlation found between the AICP-R 
and TOAST scores, r(25) = .206, p = .324, BF10 = .393. For 
all DV counts (e.g. number of obstacles encountered), a 
standardized value was calculated of number per minute, in 
order to control for length of time. There was not a 
significant correlation between the number of obstacles that 
individuals encountered and their reported trust, collected 
with TOAST, r(25) = -0.139, p = .508, BF10 = .306. No 
correlation was found between TOAST and the number of 
behaviors coded, r(25) = .046, p = .827, BF10 = .254, or 
between the TOAST and the number of glances with the UI, 
r(25) = .117, p = .579, BF10 = .287. Indicating moderate 
evidence in favor of the null hypothesis for the correlation 
between TOAST and the number of behaviors, in addition to 
the number of glances with UI.  

FIGURE 2.    CORRELATION BETWEEN BEHAVIORS AND UI 
GLANCES/INTERACTIONS  

 

 
Note: The dashed lines represent the 95% confidence interval for the 

regression line fit onto the data. 

There was a significant correlation between the number 
of obstacles and number of behaviors coded, r(25) = .500, p 
= .011, BF10 = 5.280, indicating moderate evidence. A 
significant correlation was found between the number of 
obstacles coded and the number of glances with UI, r(25) = 
.618, p < .001, BF10 = 41.788, with very strong evidence in 
favor of the alternative hypothesis. There was also a 
significant correlation between the number of behaviors and 
glances with the UI, r(25) = .695, p < .001, BF10 = 272.491 
(Figure 1), with extreme evidence in favor of the alternative 
hypothesis. Finally, there was no correlation between the 
monitoring subscale, and number of glances/interactions 
with UI r(25) = -.017,  p = .938, BF10 = .249.  

VI. DISCUSSION 

The study's goal was to examine further individuals' trust 
in automation and the relationships between different 
measures used to assess trust. Trust is a construct that can be 
measured through numerous assessment techniques, and this 
study utilized self-reporting measures and behavioral 
measures [4], [16]. The results from the present study show 
no correlation between the number of coded behaviors and 
TOAST. Our results indicate moderate evidence in favor of 
the null hypothesis between the TOAST score and the 
number of coded behaviors. This lack of convergence could 
be explained in several ways. First, it may simply be a 
function of the fact that our participants were highly trusting 
of the system. The individuals in our study had an average 
score of 5.893 out of 7 on the TOAST. As such, it is likely 
the case that any behaviors which could be considered 
‘anxious’ behaviors in response to low trust, could simply 
have been motivated by some other antecedent.  

Alternatively, it is possible that the behaviors and self-
report were assessing different constructs altogether and that 
behaviors, despite being used in the past, may not be a great 
indicator of trust. One reason is that behaviors obviously 
have many motivators beyond simply trust in an automated 
system. One final potential explanation for these results is 
the timing of them. Perhaps participants did not trust the 
system at the moment; however, following the trial, 
participants were able to reflect upon their experience, 
realize there were no adverse events, and thus indicated a 
higher level of trust. Unfortunately, our results cannot speak 
directly to any of these potential explanations.  

Our results indicate that scores of individuals on the 
AICP-R monitoring subscale were surprisingly not 
correlated with the number of glances with GUI, which we 
believed to be a good measure of actual monitoring. The 
lack of correlation between AICP-R and glances at the GUI 
potentially indicates a disconnect between one’s level of 
possible complacency toward a system and the level of trust 
displayed toward that same system. Additionally, the GUI in 
this study may not have provided enough information to the 
individual to warrant them monitoring it at all, thus leading 
to nonsignificant results. However, there was only anecdotal 
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support for the null hypothesis, and we would therefore 
caution over-extrapolation of the results.  

Despite the aforementioned lack of convergence, three 
significant results regarding behaviors exhibited by the 
individuals were found: 

1. A significant correlation between the number of 
obstacles and coded behaviors was found. This is 
expected in that obstacles encountered would likely 
be a period of stress given the anticipation and 
uncertainty surrounding how the vehicle would 
handle the situation.  

2. There was a significant correlation between the 
number of obstacles and the number of times a 
participant glanced at the GUI. Similarly, this is to 
be expected given that the more frequently one 
would interact with a system, the more often they 
may perform checking/verification behaviors.  

3. There was a significant correlation with extreme 
evidence in favor of the alternative hypothesis, 
between the number of behaviors exhibited by the 
individuals and the number of glances at/interactions 
with the GUI, which shows a degree of convergence 
across these behavioral measures.  

The displacement behaviors selected in this study were 
correlated with the external obstacles and the number of 
glances at the GUI, thus further demonstrating that the trust 
was misplaced as a function of the external attributes rather 
than trust in the system itself.  

Evaluating convergence across measures provides a 
more complete picture of a given construct. The results 
demonstrated a lack of convergence across the AICP-R, 
TOAST, and behavioral measures which could suggest that 
our definition of trust may be insufficiently nuanced to 
account for discrepant results found across self-report and 
behavioral measures. However, because of the high degree 
of convergence across the behavioral measures, it appears as 
though our behavioral measures are assessing a set 
construct. Whether this construct is in fact trust warrants 
further exploration. Although research has shown a 
correlation between displacement behaviors and stress [33], 
[34], [43] there was no indication that this stress is 
indicative of trust as defined by the TOAST self-report. This 
could imply that the measures are measuring two different 
aspects of trust or constructs entirely. 

This study is somewhat limited in the assessment 
techniques used, and in the environment in which they were 
tested. These results do not signify that current assessment 
techniques are invalid, nor that there would not be 
convergence across measures in other environments. 
However, the results of this study necessitate further 
investigation into why a lack of convergence was observed. 
Future research should aim to determine whether the 
behavioral measures used accurately measure trust. Should 
these results be replicated in other environments, and with 

other assessment techniques, the definition of trust as a 
construct might require reevaluation.  
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