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This paper describes a system for collecting and analyzing 
multispectral imagery to evaluate crop health and streamline 
vineyard management in small to medium-sized vineyards. The 
system consists of three main components: a sensor assembly with 
a multispectral camera, quadcopter with flight automation, and a 
web-based decision support information system for analyzing 
multispectral imagery. Multispectral imagery can provide a 
holistic view of crop health through the use of different indices. A 
widely used index is the Normalized Difference Vegetative Index, 
which uses red and near-infrared reflectance as a proxy 
measurement for plant health. The authors tested the system at a 
small vineyard located in Albemarle County, Virginia, to better 
inform vineyard management of existing problems and trends in 
primary crop and undergrowth. Preliminary findings indicate the 
value of using this indicator-based approach for analyzing crop 
health in vineyards. 
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I. INTRODUCTION 
Vineyards in Virginia are in a unique context. The scale of 

the grape-growing operations, land suitability, microclimates, 
and startup costs can be hurdles for grape farming in Virginia. 
Vineyards can struggle with crop diseases, like downy mildew, 
due to the dark, humid conditions that promote this disease. 

This project began as an emergent collaboration between a 
vineyard manager of a mid-sized vineyard and winery in 
Albemarle County, Virginia, and the undergraduate authors. 
The aim of this collaboration was to explore ways to use 
multispectral imaging to support viticulture decisions [1].  

One way to support these decisions is through the use of 
vegetation indicators, which are calculated from multispectral 
images and can provide a holistic evaluation of plant health. 
These indicators can help provide insights in comprehensive 
measurements of health such as vigor, which refers to how well 

a vine or vine area grows. An indicator approach differs from 
other approaches that use multispectral images which use 
empirical methods to evaluating correlations with multispectral 
data by comparing them to crop yield, pH levels, and berry 
weight [1].  

The decreasing costs of sensors and drones means that 
multispectral imagery is potentially more accessible then 
traditionally collected satellite imagery. As crop health changes 
spatially and temporally, there is value for this application in 
higher frequency of data collection over smaller spatial extents.  

II. METHODS 
The system designed by the authors consists of three main 

components: a sensor assembly with a multispectral camera, 
quadcopter drone with flight automation, and a web-based 
decision support information system for analyzing 
multispectral imagery. There were two primary functional 
requirements: (1) the ability to evaluate the health of the entire 
vineyard at a glance; and (2) the ability to digitally mark and 
save the location of vines which have been visually identified 
as diseased or dying while working in the vineyard. The first of 
these requirements was addressed through the implementation 
of an aerial multispectral system while the second was 
addressed through the creation of software application. 

A. Aerial Data Collection 
While several UAV platforms were tested in order to 

determine their suitability, the authors chose a DJI Phantom 4 
drone (Figure 1). The platform was primarily chosen for its 
flexibility and ease of modification. The system also includes a 
web-based interface that enables users to place notifications 
over different index mappings.  

 



 
Fig. 1. UAV platform with sensor assembly. 

B. Multispectral Imaging 
Multispectral imaging is based on the principle that objects 

reflect different wavelengths of ambient light differently, 
depending on their chemical composition [1]. Additionally, 
objects emit infrared radiation dependent on their temperatures. 
These properties make it possible to identify certain objects and 
chemical compounds from a distance, as well as their 
temperatures.   

The multispectral camera used in this project, a Micasense 
Altum, includes five individual cameras that measure 
reflectance in distinct wavelength bands1. This multispectral 
camera includes a sixth camera which measures the thermal 
infrared, which spans the 3000-20000 nm range. The green 
camera is generally used to map the abundance of chlorophyll. 
The red camera is often used to identify factors, such as; 
humidity, crop type, soil quality, and plant stress. Additionally, 
this band shows sharp contrast between plants and soil, making 
it useful for establishing a baseline for other measurements. The 
reflectance of the red edge wavelengths is very sensitive to the 
concentrations of chlorophyll and can be used in tandem with 
the red band to determine crop health. The near-infrared is used 
mainly to measure moisture in the soil and analyze erosion risk 
[2]. In addition to this camera a DLS 2 sensor made by 
Micasense was used to improve radiometric light readings by 
reading light reflectance and angle while the drone is in flight. 
This additional sensor helps to reduce post-processing time. 

Collectively, the data from these cameras can be used to 
compute vegetation indices, such as; the Normalized Difference 
Vegetation Index (NVDI), Normalized Difference Red Edge 
Index (NDRE), and Visible Atmospherically Resistant Index 
(VARI) [3]. These indices are used to monitor the health of 
plants. 

C. Photogrammetry 
In addition to multispectral imagery, the data collected by 

the camera in an aerial drone flight can be used to assemble a 
digital surface model using photogrammetry. Photogrammetry 
relies on having multiple pictures of the same area taken from 

 
1 Blue (465-485 nm), green (550-570 nm), red (663-673 nm), red edge (712-
722nm), and near-infrared (820-860 nm) 
 
 
 

different angles to determine depth, which, in this use case, 
results in an elevation map of the land surveyed. The 
commercial software Metashape, by Agisoft, was used for this 
analysis because of its Python API. Photogrammetry is 
commonly used in 3D modelling applications and surveying. 
Photogrammetry is incredibly versatile as it can be used to 
generate a depth map from any dataset which has location, 
elevation, extent, and angle for each image. 

D. Web Application 
These solutions were brought together and oriented toward 

the user through the development of a full stack web application 
(Figure 2). This application allows the user to geographically 
overlay and interact with multispectral data through an array of 
indices. It also allows the user to track pinned locations of 
interest from the offline field application. 

The full stack web application including a front-end 
graphical interface2  and back-end server system3  for storing 
aerial imaging and agricultural information. The frontend was 
tested with a test suite which includes the standard built-in 
React test and a separately developed test on key frontend 
components. In addition, the backend functionalities 4  were 
tested using a third-party application called postman. The 
functionality was successful if the data being served matched 
the data being requested. 

  

 
Fig. 2. Front-end of Web Interface. 

 
In addition, to ensure quality under a production-like 

environment before application deployment, the workflow used 
a Blue-Green Deployment model where two identical 
production environments work in parallel as a fail-safe. These 
environments are clones and use the same database backend 
and app configuration. This robust method allows the 
developers to test for functionality and performance before 
deploying the respective environment as the live version for 
production. Furthermore, with the use of Datadog, a monitoring 

2 The frontend was developed using the JavaScript framework React JS 
3 the backend was developed using the Python library Django with data 
stored in an SQLite database 
4 The functionalities tested include get, post, update and delete request. 



service for cloud-scale applications, the developers can analyze 
their applications performance metrics down to the kernel level 
for specific processes. This allows developers to efficiently 
optimize their resources to the most demanding processes based 
on infrastructure metrics like CPU and Memory utilization.  

Another significant component to optimizing the workflow 
and deployment of the web app was using Docker, a 
containerization tool. Containers are a standardized unit of 
software that allows developers to isolate their app from its 
environment. They are extremely lightweight and only require 
a kernel to operate the web application.  

The web application was deployed using a cloud provider, 
Amazon Web Services (AWS). A major advantage to the use 
of containers was the ability to automate 100% of the software 
delivery to AWS. In our case, Travis CI, a continuous 
integration and continuous deployment (CI/CD) tool was used 
fully automate our system into a production grade workflow. 
The CI/CD pipeline allows developers to automate container 
builds, test environments through test suites, injecting 
monitoring services, reverse proxy ingress, and deployment. 

When a developer commits code to our remote code 
repository, the CI/CD pipeline is configured to pull the new 
repo and build the web app consisting of multiple docker 
containers. For reference, our web application’s containers are 
the frontend client (React), the backend server (Django), a 
reverse-proxy for network routing between containers (Nginx), 
and our infrastructure monitoring service (Datadog). Then 
Travis CI runs specific test suites to our frontend client and 
backend server containers to check for any problems. If either 
container fails their test suites, then the CI/CD pipeline build 
would fail, notify the developers of the failed build, and prevent 
that errored code from being deployed to its respective 
environment. In addition, the pipeline would prevent that failed 
build from ever being merged to the master branch (production 
version), stopping it from affecting the live versions of the web 
application.  

If all test suites were completed and successful, then Travis 
CI will fully build all the containers for the web application. 
Then Travis CI will tag each container with its correct 
identification and push the newly built containers to Docker 
Hub, a container registry. Then the pipeline will build the 
respective environment on AWS and prepare it for deployment. 
Once ready, the pipeline would then pull the new containers 
from the Docker Hub registry and deploy them to the 
environment. Finally, an important file instructs Travis CI how 
to build each container in the AWS instance and how to start 
operating the web app within the instance. 

E. Offline Field Application 
Because of limited internet connectivity at field site, it was 

important to develop an offline application. As there is no way 
to directly transfer geographic coordinates regarding marked 
vines while in the field, a local copy of this data needed to be 
created. This offline application allows the user to mark and 
save specific locations with notes before uploading them to the 
web application when internet connection becomes available.  

The prototype field application consists of a GPS module 
connected via USB to a computer, a Python script to read and 

parse the data over serial connection, and a user interface 
developed in the Python Graphical User Interface (GUI) 
package Tkinter. This application sends user notes along with 
GPS coordinates to a JSON (JavaScript Object Notation) file 
which can be easily passed to the web application. 

F. Calculating Indicators of Crop Health 
Normalized Difference Vegetation Index (NDVI) have 

been investigated as a proxy for crop health [4]. The NDVI is 
the ratio of red (R) and near infrared (NIR) spectral bands, and 
was calculated using Eq. 1. 

 NDVI = (NIR – R) / (NIR + R) (1) 

The Normalized Difference Water Index (NDWI) has two 
alternatives which provide different functionalities. Eq. 2 is 
used to monitor water content in leaves using green bands (G), 
and Eq. 3 is used to monitor water content in water bodies using 
short-wave near-infrared (SWIR) [4].  The later equation 
requires the use of Short-Wave Infrared readings which were 
not available using the Micasense Altum sensor.  

 NDWI = G-NIR / G+NIR (2) 

 NDWI = (NIR – SWIR) / (NIR + SWIR) (3) 

The Normalized Difference Red Edge Index (NDRE) (4) is 
a ratio of edge of Red (RE) and red band (R) and is primarily 
used to further differentiate between healthy regions of crop 
growth and dense canopy.  

 NDRE = (RE – R) / (RE+R) (4) 

Because it is sensitive to soil background effects, it is 
important to compare directly to regions with NDVI and Soil-
Adjusted Vegetation Index (SAVI) values [5]. SAVI is an 
index that attempts to adjust for different levels of vegetation 
density. The equation (5) uses a value L to normalize the 
reading with reference to the interstitial soil present in images 
of the crop canopy [6],[7].   

 SAVI = ((NIR - R) / (NIR + R + L)) + (1 + L) (5) 

The SAVI uses the constant L as a means to calibrate the 
algebraic algorithm to the degree of noise presented by 
interstitial vegetation [8]. While SAVI is a popular and well 
researched index, this project team focused more exclusively 
on NDVI as a proxy for vine vigor.  

G. Calculating temporal changes in indices 
Calculating the differences of the indices in a location helps 

to identify changing crop conditions. However, given images of 
the same plot of land taken at different times, there is no 
guarantee that pixels in the same location on each image 
corresponds to the same geographical location. This means that 
pixelwise calculations are sensitive to noise caused by the 
images being misaligned. To counter this, the calculation 
involves sets of pixels in a location of interest. Each index has a 
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