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Project-Based Learning Using the Robotic Operating System  
(ROS) for Undergraduate Research Applications  

 
Project-based learning (PBL) has been shown to be one of the more effective methods 

teachers use in engineering and computer science education.  PBL increases the student’s 
motivation in various topic areas while improving student self-learning abilities.  Typically, PBL 
has been employed most effectively with junior- and senior-level bachelor of science (B.S.) 
engineering and computer science students.  Some of the more effective PBL techniques 
employed by colleges and universities include robotics, unmanned air vehicles (drones), and 
computer science-based technologies for modeling and simulation (M&S).  More recently, an 
open-source software framework for robotic and drone development, called the Robot Operating 
System (ROS), has been made available through the Open Source Robotics Foundation.  While 
not an actual Operating System (OS), ROS provides the software framework for robot software 
and associated hardware implementation.  In this paper, we examine the use of ROS as a catalyst 
for PBL and student activities in undergraduate research.  ROS provides students, after some 
time investment, with the ability to develop robotic capabilities at a high level.  Moreover, ROS 
allows a building-block approach to robotics research.  The results and “how-to” data from our 
projects are provided on GitHub to accelerate future efforts with other PBL learning endeavors.  
A results-based evaluation criteria will be used as a partial measure of merit.  To this end, we 
post usage data from cited repositories as evidence of the contribution.  We will also contrast 
expenditure of time and effort vs. a traditional classwork environment while coupling some 
measure of comprehension and mastery of the underlying research topics used by the students in 
their undergraduate research topic.   

 
Introduction 

Robotics has, for the past several decades, been a mainstream staple for project-based 
learning (PBL).  PBL and robotics have been used at every level of education to spark student 
imagination and learning activities.  With First Robotics (Moylan 2008, Barron et. al. 2008) and 
VEX (Das Shuvra et.al. 2010, Ruzzenente 2012) at levels from K1–12 (Grandgenett 2012) to 
undergraduate programs, and (Sébastien 2001) we have seen the value of PBL when used with 
Robotics.  In these examples, many of the project learning activities are centered around 
competitive goals.  These goals, however, are not a necessity of PBL.  The same learning 
objectives can also be achieved by incorporating them into a specific design objective or project 
requirements.  Using PBL and robotics, (Ramos and Espinosa) showed that the same learning 
objectives of a traditional classroom could be achieved via PBL.  The crux of their approach was 
to build a student-centered learning model using PBL that served as a bridge from a teacher-led 
environment to one of self-discovery.  (Hees et al. 2009) also showed the value of self-discovery 
and learning with minimal input from instructors.  Regardless of the classroom objective, 
robotics seems to be a topic in which students will devote time and energy learning new 
materials to accomplish specific tasks or goals.  



Robotics is a multi-discplinary field incorporating elements of mechanical and computer 
engineering, and computer science. Traditionally, robotics courses and degrees have typically 
been offered through graduate programs but has seen an expansion into the undergraduate 
curriculum through capstone projects (Michalson 2010), upper-class courses (Keer 2012, Meuth 
2009, Garcia 2015, Lessard 1999) and freshman engineering (Xu et. al 2014) through 
introductory platforms such as the Lego NXT and Vex robotics. Given the increased number of 
incoming students interest in robotics, two undergraduate programs have been developed in 
robotics engineering (WPI 2017, Lawrence Tech 2017). These programs have observed a large 
growth in enrollment and successful placement of students in industry or graduate school 
(Gennert 2013).  Within these independent studies we focus on the use of the Robotic Operating 
System (ROS) to facilitate robot design and implementation. ROS is free, open-source and 
supplies a large ecosystem of nearly 3,000 packages to accelerate application development. ROS 
has also been used in education settings to teach kinematics to mechanical engineering students 
(Yoursuf 2015) and develop robotic arms with high school students (Yousef 2016). 

 
In this work, we used some basic proven principles while attempting to raise the bar of 

difficulty and examine if undergraduate students might use robotics, in particular ROS, to learn 
advanced concepts while contributing to undergraduate research activities.  While we fully 
understand that this question will not be laid to rest by this study into the topic, we are examining 
on a limited basis where this should work.  Our initial fear was in overreaching and thereby 
providing student frustration rather than meaningful learning experience.  However, once we 
started the process, we found these potential problems not to be an issue for the students selected 
for this study. 

 
To begin, it is appropriate to give some of the background for ROS so that others may 

determine whether this is an appropriate platform for their programs.  ROS has become a huge 
project in the past 5–7 years, and it has many contributors.  Originally, several efforts at Stanford 
University that involved artificial intelligence were developed into an in-house software system 
that could be used for robotics.  Later, a small start-up company called Willow Garage provided 
essential resources to extend the initial concepts developed at Stanford.  The project was 
furthered by numerous researchers from around the world who contributed software and 
hardware examples to the core ROS concept and basic functionality.  Today, ROS is used at 
numerous universities, government labs, and elsewhere around the world for robotics research.  
While ROS is a staple of most graduate robotics programs, it is only now starting to be used in 
undergraduate programs.  Additionally, ROS is widely used for computer science programs and 
exposes students to best practice with a number of computer programming paradigms.  In this 
study, we take advantage of these features while using the basic ROS framework to expose 
students to hardware and software integration techniques that are usually reserved for graduate 
programs.  Furthermore, we use ROS with PBL to expose students to practical problems found in 
robotics while expanding their knowledge in control methods, vision algorithms, and electronic 
integration of components needed for our project.  

 
Our overall goal of this study was to expose students to advanced topics in robotics using 

PBL and to see if they could make meaningful progress.  Our assessment criteria were not 
intended to be absolute, rather selectively based on a narrow perspective from which we could 
grow the program while making adjustments. Participation in undergraduate research 



experiences has been shown to increase a student’s confidence in the discipline and increase 
continuation into graduate school. (Conrad 2015, Russell 2007, Zydenny 2002). 

 
Therefore, we did not open the independent study course up to simply any student wanting to 

work on robotic systems but instead limited the availability to only a selective few students.  We 
targeted the students we knew had the best academic record and who had a history of going 
“above and beyond” on courses to get good grades.  We used a short write-up of proposed topics 
and objectives that would be tackled during the semester.  Interviews with perspective students 
were conducted either in person or via Skype.ǂ  The structure of the independent study course is 
provided as an attachment in Appendix A.  Initially, we determined to limit the first semester to 
three students with two professors assisting them.  (In our second semester, which is starting as 
of the writing of this paper, we will double the number of students and add one additional faculty 
member.)  Initially, we had one female and two male students in our course, and we met once a 
week formally and usually once a week informally throughout the semester.  Independent study 
(as currently construed) addresses three of the seven “Big Ideas in Robotics” (Touretzky 2012). 
 
Approach 
 

For many of the topics and subtopics in this course, the students we selected had no prior 
knowledge or experience.  In some of the topics, such as programming language, the students 
had already taken a course or two, introducing them to languages such as C++ and Python and 
giving them the basics of building, compiling, and debugging code.  For larger topics, such as 
ROS and the Turtlebot, the students largely had little or no knowledge/awareness of the topic.  
However, we expect this situation to change in time as the course grows at the college and other 
students become aware of what we are doing through word of mouth and student social 
interactions.  For this first semester, our probe into these topics was largely uncorrupted.  Table 1 
shows a survey of the students’ knowledge in a number of topics that would be needed to 
complete the projects outlined in Appendix A as a baseline and possible partial measure of merit.  
Note that a “1” on the scale represents a student having no prior knowledge and a “10” 
represents a student being fully educated in the topic’s uses and interworkings.  Once again, we 
understand this is a subjective measure determined by a number of factors, including the 
students’ personalities.  
  

Each student’s course of study was initially similar, but as the semester progressed, each 
student became more focused on his/her individual project objectives.  Certainly, one of the 
objectives of any independent study course is to have less structured classroom time and a more 
open student learning initiative-based approach.  After all, there are ample videos and learning 
materials on the web that the students could easily access to learn about the Turtlebot and ROS.  
Nonetheless, it was necessary to build an initial framework of knowledge from which the 
students could launch into individual projects while still retaining some common framework.  
Throughout the semester, students were encouraged to share what they had learned and openly 
interact with one another.  To achieve a common framework of knowledge, students spent their 
first 6–8 weeks (basically half the semester) on a self-paced but common path.  To start, the 
students needed to build an Ubuntu system with ROS and the Turtlebot libraries on it for the 
                                                
ǂ Skype is a web-based application that provides video chat and other services on a variety of platforms, including 

Microsoft and Macintosh. 



robots.  To this end, we used the ASUS EeePCs 32-bit and 64-bit system architectures.  The 
students also needed to build an Ubuntu system on their own laptops to interact with the 
Turtlebots.  These system builds varied from dual boot to virtual systems, and each had its own 
set of nuances and challenges for the students. 

 

Figure 1.  Initial Student Topic Knowledge. 
 
 Another objective of the initial phase of the independent study was to familiarize the 
students with ROS’s publisher subscriber methodology and the capabilities and limitations of the 
Turtlebot.  Students needed to rapidly understand this environment to write programs to extend 
capabilities already documented and available on the web.  Our end state goal was to create a 
Turtlebot capability† not already available using examples that could be downloaded from the 
web and extended.  This goal was accomplished by combining existing techniques and creating 
entirely new methods within the ROS environment.  The Turtlebot system has more than 30 
ready-made tutorials teaching students how to set up, test, and challenge their abilities.  The body 
of these examples alone could occupy a student for the semester.  However, to get started, 
students were required to do roughly the first dozen of these learning exercises.  In a similar 
fashion, ROS has a number of tutorials†† to take students from beginners to more advanced levels 
of programming.  These examples teach students how to program in the publish subscriber 
environment of ROS.  Once again, students were required to work the first dozen or so of these 
examples.  Due to the level of difficulty of mastering the ROS programming environment, this 
process was supplemented using O’Kane’s book A Gentle Introduction to ROS. (O’Kane 2013) 
Students were required to work through the first seven chapters of the book while doing the 
Turtlebot and ROS tutorials.  The book “Practical Python and OpenCV” was also used too 
introduce students to the OpenCV (Rosebrock 2016) libraries for visual operations. Additionally, 
students were asked to give weekly oral presentations of their progress and problems, enabling 
open discussion with the faculty and other course students to resolve problems and present 
potential solutions.  While this approach may seem relatively ambitious, the students were not 
pushed but were allowed to work at their own pace within the constraints of their own individual 

                                                
† Turtlebot tutorials can be found at http://learn.turtlebot.com/. 
†† ROS learning tutorials can be found at http://wiki.ros.org/ROS/Tutorials. 



course loads.  And what was observed was a similar willingness to spend time and energy 
working with the robots as what has been observed at the college on capstone projects such as 
Baja and Formula competitions. 
 
Project Development 
 
 Initial growth activities included having the students all worked toward mapping the 
college’s engineering building.  The building consists of faculty offices, classrooms, labs, 
workshops, and study areas, which are all interconnected by a series of hallways.  What was 
discovered in the process were numerous opportunities to expand and contribute to the growing 
body of examples readily available on the internet using ROS and the Turtlebot.  The facility was 
far too large to map in one Turtlebot mission, and therefore it was necessary to either splice maps 
together or create a map that could be used by the Turtlebot during its missions.  Other activities 
were broken into subprojects, and students were encouraged to work on these whenever they 
became stuck so that progress in their learning could continue to be made.  These subprojects 
included ArUco tag tracking, Radio Frequency IDentification (RFID), map splicing and creation, 
Arduino interfacing, color tracking, and object map location determinations. Each activity was 
reviewed on a weekly basis to assure progress. The details of these technologies are interesting 
enough in themselves and are detailed in a separate publication by the students.  In the end, it 
was proposed that the students develop a series of programs and capabilities that enabled them to 
have one Turtlebot navigate the building from one point to another and have another Turtlebot 
follow the first using Aruco tags while leaving bread crumbs.  The bread crumbs were to be 
objects that could be found by the last Turtlebot, with each having RFID tags that identified 
them.  The students were to work together as a team, dividing up the tasks into subtasks that each 
could work on.  Each project was to be capable of being published as a stand-alone tutorial that 
could be used by other students in the future.  As an added measure of merit, these projects will 
be documented and put on GitHub, allowing others students to “git-clone”‡ them rather than 
starting from scratch.  Furthermore, by tracking usage of the repository, the number of times 
other people take advantage of the work for their own projects can be ascertained.   We will also 
use this metric as a measure of merit.  The overall project was broken into three specific tasks.  
The level of technical difficulty also provides some measure of merit, and therefore the following 
text briefly provides an overview of what each task entailed.  The work’s technical details can be 
found in the GitHub repository or in the student paper.  
 
 Task 1:  Mapping and Navigating.   
 

All of the students used the Kobuki Turtlebot with an Asus laptop and either the 
PrimeSense‡‡ or Xtion sensor.  Both sensors use the imaging technologies developed by 
PrimeSense.  The original Turtlebot used the Kinect sensors and also used the same technology.  
The imaging technology provides a three-dimensional (3D) view of the world and, along with 
wheel turns, helps the Kobuki Turtlebots to localize.  In the Turtlebot tutorials referenced 
previously, there is an experiment where an operator can create a two-dimensional (2D) map and 
then, using that map, provide an autonomous mission for the bot.  To do this, the driver would set 

                                                
‡ Git-clone allows users to clone a repository into a new directory to track changes and get a head start on research 

needing specific capabilities.  Details can be found at: https://git-scm.com/docs/git-clone. 
‡‡ PrimeSense is an Israeli 3D sensing company based in Tel Aviv. 



up the Kobuki to accept commands from a standard joystick on a remote computer.  The 
computer on the bot and the local laptop are networked in the ROS environment.  Then, using the 
data from the onboard PrimeSense camera, the bot collects vision-based data as the bot is driven 
around.  Typically, the bot is out of sight of the operator.  Then using SLAM algorithms already 
developed, the bot creates a map based on wheel turns and the image data being collected by the 
PrimeSense sensor.  The data are then stored in a yaml†‡ and pgm raster image file.  A portion of 
a typical pgm map taken in the engineering building is provided in Figure 2.  Thick black lines 
represent walls, white space represents free space, and gray is unknown.  Each pixel on the map 
represents 5 cm of space.  This image took about 10 minutes to create and represents about 10 m 
of hallway.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  pgm Image File From Robot Experiments. 
 
When the bot uses the map, if an object is put in the robot’s path, it will still avoid it.  When 
operating in the immediate area from its start point, the bot can move from one location to 
another without too much difficulty.  However, when the maps become larger, the lines become 
more skewed and the bot can experience difficulty moving from one location to another.  
Modifying the underlying algorithms was well beyond the scope of an undergraduate PBL.  Also, 
mapping larger areas required the maps to be spliced from separate experiments, resulting in 
greater uncertainty and a lower probability that the bot would actually reach its final destination.  
Numerous experiments were conducted with the bots.  In the end, one student determined that a 
map of the building was needed to enable the robot to navigate longer distances.  Because no 
program could be found on the Internet to accomplish this task, a program was needed.  To do 
this, the student needed to develop a program that would take a raster image in any format, scale 
it to the appropriate dimensions, and write the associated yaml and pgm files for the Turtlebot’s 
use.  Using the tool that the student developed, others can take rough floor plans or draw their 
own plans to be used with the Kobuki bots and autonomous navigation missions.  One of the 
scanned floor plan maps of the engineering building is shown in Figure 3 for reference.  
 

The shaded area in Figure 3 represents the area from which Figure 2 was taken.  The 
student developed the program using Python and OpenCV.  Because the student had no prior 
experience using Python, she needed to go through a similar process to what was done with ROS 
                                                
†‡ yaml stands for “yet another markup language.” 



and the Turtlebot.  She mastered what she needed from OpenCV‡† tutorials and a book.  The 
technical details, resulting code, and examples are provided via YouTube videos,†‡‡ and the 
code‡‡‡ can be downloaded from Google Drives.  At the time of this writing, the code video had 
already been accessed 62 times.   
 

Figure 3. Engineering Building. 
 
 Task 2:  Leader Follower Using ArUco Markers.   
 

Numerous examples that use ArUco tags, their generation,††† and detection using 
OpenCV libraries††‡ can be found on the web.  However, our starting point for this project was 
using the GitHub example given on the USMA GitHub ROS repository.  Figure 4 shows an 
ArUco marker being tracked and the resulting vectors describing its orientation and distance 
from the camera.   

 
The vectors seen in the screen are provided as part of the ROS publisher subscriber and 

are accessible in the ROS publisher subscriber programming environment.  What remained to be 
done was to write a program accessing this information and couple it with the Kobuki’s 
movement.  The program needed to use a camera to sense when the marker was moving toward 
or away from the bot.  This need was met using the vectors shown in the figure and some control 
laws.  For this application, the student could have used the PrimeSense camera, another universal 
serial bus (USB) camera, or the camera that is associated with the Asus laptop controlling the 
Kobuki.  The student chose to use the latter but in the end added an independent camera.  
Additionally, this application is a control problem that requires a controller and some initial data 
manipulation.  The issue for the data required a Kalman filter, (Haykin 2001) while the control 
issue could be handled using a standard proportional integral derivative (PID) controller. (Hogg 
et. al. 2002).  In both cases, the student needed to research and experiment with these to get the 
                                                
‡† http://docs.opencv.org/2.4/doc/tutorials/tutorials.html.  
†‡‡ Video instructions are given at https://www.youtube.com/channel/UCQgDH1KtuoDZkafNM0QiC-A.  
‡‡‡ Code can be downloaded from https://drive.google.com/file/d/0B2AcDRX3bKLVdjhPU1B2UUNRaDA/view.  
††† ArUco tags can be generated via http://terpconnect.umd.edu/~jwelsh12/enes100/markergen.html.  
††‡ ArUco tag detection in OpenCV is shown at 

http://docs.opencv.org/trunk/d9/d6d/tutorial_table_of_content_aruco.html.  



robot to follow another robot smoothly.  There was also the geometric issue of the leading robot 
turning and the following robot losing visual contact with the ArUco tag.  The technical details 
of the effort are in the GitHub repository (at https://github.com/plynn17/Aruco_move_ros_pkg) 
and in the student paper.  Figure 5 shows the leader follower operation in action.  For this 
project, a C++ program (cleverly named ArUco_move) was developed in the ROS environment.  
The PID variables were arrived at using trial-and-error methods.  In the end, the system worked 
reasonably well and will serve future projects, which will include the use of drone vehicles. At 
the writing of this paper the overview video had been viewed 47 times. 
 

Figure 4.  ArUco Marker Detection (Marker 26) using OpenCV and ROS. 
 
 

 
Figure 5.  Leader Follower Operations. 

 
 Task 3:  Object Recognition and RF Tag Detection.   
 

Object recognition for this task was handled using Python, OpenCV, and ROS.  For this 
task, the student needed to couple object recognition with robot movement and used the same 
Python and OpenCV libraries and techniques used in the first project.  The only difference was 
that this action was conducted with a video stream rather than a single picture.  However, in the 



end, the two methods are the same inasmuch as the video stream is treated as a series of still 
pictures that are being manipulated in real time.  For this project, the student already had some 
experience writing Python scripts.  However, the scripts still needed to be coupled into the 
publisher subscriber environment in ROS.  Then the robot’s movement needed to be driven by 
the location of the objects.  The goal is to have the robot approach the object and then, using an 
arm, read the RF tag.  The RF tag can only be read at close range; therefore, the robot movement 
needed to be fairly concise.  For the object location, the student chose to use the PrimeSense 
camera rather than a USB camera.  The RFID integration was far more straightforward as there 
are numerous how-to examples in Python on the web.  The associated Python code and ROS 
make files for this effort can be found at https://github.com/mrjones2014/ROS-RFID-Finder. 
 
Observations and Adjustments 
 

(Prince 2004) points out that, when asked if Active Learning works, learning outcomes 
are often not available, making assessment difficult.  Furthermore, when data are available, 
determining whether a particular approach works becomes a matter of interpretation.  Our initial 
assessment was based on exposing students to topics that they had no prior knowledge of and 
seeing if they could make notable progress using PBL within an independent study course.  As 
measures of merit, we included an initial survey of prior knowledge of the topics they would 
need to learn and then an exit survey, asking the same questions (see Figure 6). 

Figure 6.  Final Student Topic Knowledge. 
 
As Prince28 points out, the inclusion of this data is subjective at best.  Nonetheless, it seems 
prudent to have some measure, from the student perspective, of what was accomplished.  In the 
coming semester, we will additionally track the students’ time spent on a weekly basis and 
compare that to another one of their technical courses for comparison.  We recognize that this 
comparison is not absolute, and students must gauge how they spend their time. Nonetheless, 
putting additional time into a topic or course of study will ultimately benefit them and we 
observed a willingness by all of our students to put additional time into this project.  What was 
observed by the faculty was that the students were spending a large amount of their time in the 
lab working with the robots.  Regardless of one’s perspective, it can be argued that this is usually 
a good sign.  However, in this study, we also felt that another measure of merit was whether what 
the students had accomplished was of interest or had value for others.  For the question of “Are 



we making a contribution to a body of work?” a good measure is usually whether anyone else 
wants to use it.  This measure we felt was best assessed by tracking video hits and downloads. 
After all, what better measure do we have then whether the community will use what we have 
created?  Questions as to whether someone can find our examples is also of concern, but we feel 
that with proper tags, this concern can be mitigated.  Naturally this is an ongoing process and it 
can be checked by visiting the links listed in this text.  As one small example the map making 
educational videos had a combined 96 views 3 months at the time of this submission.  Whether 
or not this is a useful measure of merit will be more evident in a year or two and published in 
subsequent publications. 
 
Conclusion 
 
 For the independent study described herein, PBL was employed with some success.  As 
mentioned, for this initial study, we were highly selective of which students we took, which we 
recognize likely skewed our results toward success.  In the coming semester, however, we will 
double the number of students we allow into the course.  The end goal of the course was to 
motivate students using robotics and drones and to see if this approach provided the same level 
of interest as the Baja and Formula competitions.  It is well known that robotics has worked well 
with K–12 students in First‡†‡ and VEX competitions.  For our limited experiment here, we had 
one student apply to graduate school in a course of study of robotics.  In another instance, one of 
our students was offered a job on the spot from a defense contractor once she described what she 
had been working on during the semester.   
 
 ROS is a staple of many of the graduate research programs at a variety of universities.  In 
this paper, we have examined the use of ROS as a catalyst for PBL and student activities in 
undergraduate research.  ROS enabled our students, after some time investment, the ability to 
develop robotic capabilities that would otherwise have been impossible.  ROS provided a 
building-block template for the students who created robot behaviors and missions of interest.  
The results and how-to data from our projects were provided on GitHub, YouTube, and Google 
Drives.  It is hoped that these efforts will accelerate future efforts with other PBL learning 
endeavors at the college and elsewhere.  Results-based evaluation criteria were used as a partial 
measure of merit.  To this end, we included citation and usage data from the YouTube videos and 
GitHub repository as evidence of the contribution.  We also noticed an increased expenditure of 
time and effort vs. what is normally observed in a traditional classwork environment.  Finally, as 
a measure of comprehension and mastery of the underlying research topics used by the students, 
we used before and after surveys of robotic topic areas.  
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Appendix A:  Goals and Approach 

 
Learning Activities and Objectives:  

• Learn Linux, Ubuntu, ROS Setup.  
• Learn Robotic Operating System (ROS) development environment.  
• Learn how others have built ROS-enabled programs for robotics systems by recreating 

and  
extending several existing GitHub ROS examples.  

• Be able to develop from scratch an ROS-enabled application in C++ or Python.  
Stretch Goals:  

• Understand the ROS simulation environment and create an ROS simulation.*  
• Create a drone-based leader follower.*  
• Document results.*  

Learning Activities:  

a) Building an OS and then the ROS environment on a Unix micro machine (Ubuntu).  
Platform will be a NUC-I7, Raspberry Pi, ODroid XU4, or equivalent.  This will be 
provided to the student.  
b) Interfacing with simulation software and GUI development in Python or C++.  
Demonstrate marker identification and other visual queues for use in autonomous 
navigation.  Learn and use library functions in OpenCV, NumPY, FreeNect, and other 
enabling freeware.  
c) Interfacing with hardware.  This includes microprocessors to video devices, joysticks, 
pan and tilt mechanisms, sensors, etc.  Contribute to the community via GitHub and 
collaborate with U.S. Military Academy (USMA) and other ongoing undergraduate 
research.  
d) *Communicating with robotics and or other vehicles.  Create ad hoc networks to pass 
information between platforms.  Demonstrate cooperative movements, probably with 
TurtleBot to start.  
e) *Developing an interface between the 3D robotics ArduPilot “Pixhawk” and the 
microprocessor and demonstrating autonomous flight.  Demonstrate a leader follower 
drone and autonomous drone swarming capability.  This may be demonstrated using a 
ground robot prior to aircraft use.  Drones and ArduPilot autopilots will be provided to 
the student.  

Evaluation:  
20% bi-weekly meetings to assess progress; 20% final report; 20% part a; 20% part b; 20% part 
c, d,* and e.*  
* Represents stretch goals.  These items will act as bonuses if the student is able to achieve them.  


