Effects of informal versus schoolbased field experience on elementary preservice teachers' self-efficacy for teaching science

Nicole Hesson, EdD (York College of Pennsylvania) Jason Forsyth, PhD (James Madison University)

Greenhouse Project Background

- Joint venture of the Engineering and Education departments at a mid-sized liberal arts college in south central Pennsylvania
- An internal grant largely funded the building of an automated greenhouse at a local K-8 school in a nearby urban district
- Additional funding was granted by a local non-profit organization
- Two overarching pieces
 - Construction of the greenhouse by senior-level Engineering students
 - Creation of accompanying curriculum by junior & senior-level Education students

Goals of the Greenhouse Project

- Broaden the type of capstone experiences for Engineering students
- Provide training for preservice teachers in the Education department
- Address a pressing social & educational need within a local, urban school district

Dorchester Elementary

- One of eight K-8 schools in nearby urban school district
- Student population
 - 655 students total
 - 90.5% of the students come from low-income families
 - 26.9% are English language learners
 - 24% receive special education services
 - 47.6% Hispanic; 27.6% Black
- Dorchester's population mirrors that of the district overall

Completed greenhouse interior

Engineering Side

- All US based engineering programs accredited by ABET must include a culminating capstone experience
- Typically, students at our college participate in capstones that are more traditional, focusing on designing and competing an engineered system that may not be connected to solving a human problem (like building a racecar)
- Recent trends push capstones to be more connected to service learning that solves a real life problem
- Our greenhouse project fell under this project-based serving-learning model

Education Side

- All students preparing to be elementary educators (grades PK-4) take ECH 330, a science teaching methods course
- Prior to fall 2017, preservice teachers (PSTs) enrolled in ECH 330 completed their field experience hours in mostly informal science settings (libraries, local state park)
- Beginning in fall 2017, all PSTs enrolled in ECH 330 completed their field experience in a formal classroom setting, mostly at Dorchester Elementary
- Initial study set out to compare informal settings to formal settings, using the greenhouse. However, construction delays formed a third group – formal settings without using the greenhouse
 - This study compares Cohort A (informal settings) to Cohort B (formal without the greenhouse)

Existing Literature Says....

- STEM education in the US is lacking
- We should be starting STEM education in elementary schools (but largely are not)
- Many elementary level PSTs have a low self-efficacy for teaching science
 - This is linked to their own anxiety around science/math
- Feelings of low self-efficacy and high anxiety lead to an avoidance of teaching science – which leads to negative feelings among K-8 students, who grow up to avoid science and STEM careers
- To increase self-efficacy, PSTs need positive exposure to science teaching (from teacher educators in methods courses or student teaching)

Research Questions

- Does the type of field experience placement, formal or informal, have an impact on overall self-efficacy for teaching science among elementary preservice teachers?
- Does the type of field experience placement, formal or informal, have an impact on self-efficacy for teaching science among elementary preservice teachers in two subcategories: Personal Science Teaching Efficacy Belief (PSTE) and Science Teaching Outcome Expectancy (STOE)?
- What role does the type of field experience placement, formal or informal, have on elementary preservice teachers' perceptions about their self-efficacy for teaching science?

Methods

- Data collection began in Fall 2016 and includes data through Spring 2019
 - Data collection will continue through Spring 2021 and compare Cohort C (formal with the greenhouse) with Cohorts A and B
- Every semester, PSTs enrolled in ECH 330 were asked to complete the STEBI-B at the beginning of the course and again at the end of the course
 - The STEBI-B is a measure of self-efficacy for teaching science in preservice elementary teachers (Bleicher, 2004)
- Alpha-numeric codes were used for anonymity but still allowed for tracking
- STEBI-B pre and post scores were compared using various analyses on SPSS (more on this later)

Methods, cont.

- A random subset of participants every semester was invited to participate in a focus group
- In fall 2017, students were asked to voluntarily submit responses to a set of questions about their field placement
- In fall 2019, some students mentioned Dorchester as part of another assignment and were asked for permission to use their comments
- Focus group transcriptions and written assignments were coded for patterns by the lead author and a student assistant.

Participants by Semester

Semester	STEBI-B n	Focus Group n
Fall 2016 - Cohort A	24	6
Spring 2017 - Cohort A	15	4
Fall 2017 - Cohort B	26	6
Spring 2018 - Cohort B	24	5
Fall 2018 - Cohort B	9	8
Spring 2019 - Cohort B	12	5
TOTAL Cohort A	39	10
TOTAL Cohort B	71	24
OVERALL TOTAL	110	34

Question 1: Does the type of field experience placement, formal or informal, have an impact on overall self-efficacy for teaching science among elementary preservice teachers?

- An independent samples *t-test* compared the difference in means of pre- and post STEBI-B results for Cohort A and Cohort B
- *p* value = 0.002, rejecting the null hypothesis

Measure	n	Mean
Cohort A	39	0.229
Cohort B	71	0.402

Average difference in overall means for Cohorts A & B

	df	MD	t	р
Cohorts A + B Overall Scores	108	-0.174	-3.215	0.002

Independent-sample t-test comparing overall scores for Cohorts A & B

Question 1: Does the type of field experience placement, formal or informal, have an impact on overall self-efficacy for teaching science among elementary preservice teachers?

- A paired sample t-test compared the collective difference pre and post STEBI-B results for all participants
- Three t-tests were run overall scores, PSTE, and STOE
- Highly significant differences were found on all 3 (all p value = 0.000) signifying a rejection of the null hypothesis

Measure	df	Mean	SD	t	р
Overall Pre-Post	109	-0.341	0.282	-12.660	.000
PSTE Pre-Post	109	-0.455	0.325	-14.684	.000
STOE Pre-Post	109	-0.173	0.446	-4.076	.000

Paired sample t-test comparison of pre and post-course overall and subscale scores

Thanks for coming!

Completed greenhouse interior

In the Event of a Lab Accident...

• (Use this space to discuss procedures to follow in the event of a lab accident.)

At the End of Your Lab Time...

• (Use this space to discuss what should be done at the end of your lab time.)

