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Abstract—Roadside workers and emergency responders, such
as police and emergency medical technicians, are at significant
risk of being struck by vehicular traffic while performing their
duties. While recent work has examined active and passive sys-
tems to reduce pedestrian collisions, current approaches require
line of sight using either laser, infrared, or vision based systems.
We address this problem by developing a GPS-based solution
that equips roadside workers and vehicles with GPS units to
estimate the trajectory of oncoming traffic, and estimate whether
worker strike is imminent. The results of our study show that our
approach is 91% accurate in alerting the worker and vehicle of
collisions and near misses. Furthermore, accurate warnings can
be provided 5-6 seconds before any potential collision, allowing
time for mitigating solutions.

I. INTRODUCTION

Every day there are thousands of roadway workers that
must perform their duties near passing motorists in both
defined work areas, such as traditional work zones with
barricades, cones, well-informed signage, and undefined work
areas, such as roadside events with limited or no signage.
These roadway workers include construction crews, public
safety workers, survey crews, and roadway clean-up/mowing
personnel. Each year more than 20,000 injuries and more
than 100 fatalities occur at road construction zones. Nearly
two-thirds (62 percent) of these incidents involved a worker
being struck by a construction vehicle [1]. Public safety (e.g.,
police and firefighters) personnel are at a particular risk for
being struck by passing vehicles. According to the Bureau
of Labor Statistics (BLS), about 18 percent of police officer
fatalities from 1992-1997 were due to officers being struck by
vehicles while issuing traffic citations or performing duties on
the roadway [2].

Significant efforts have examined active and passive mea-
sures to reduce vehicle and pedestrian incidents [3]. Common
approaches include using computer vision with visual [4]
and infrared cameras [5], and laser range finders [6], [7] to
estimate the presence and distance to pedestrians. While these
approaches are successful, they can be limited due to roadway
occlusions such as trees, cars, or weather that restrict the
visible range of the camera [8]. Laser and radar systems can
address these issues, but have more difficulty distinguishing be-
tween pedestrians and other roadway objects [9]. Furthermore,
these systems require line-of-sight to the target and may not

protect the roadside worker that is around a bend in the road
or over an oncoming hill.

Given these concerns, our work explores the role of GPS
in estimating potential collisions between vehicular traffic and
roadside workers. We propose equipping roadside workers and
vehicles with small GPS receivers where their positions will
be exchanged using dedicated short range communications
(DSRC). These positions will be used to calculate the like-
lihood of a potential collision by estimating how close the
vehicle will pass to the worker at some future time. GPS units
can easily be integrated into production vehicles, and new,
smaller GPS units could be used to create wearable safety
solutions for roadside workers. While positions provided by
GPS are less accurate than visual or laser-based systems, they
are not affected by roadway occlusions or environmental fac-
tors. Furthermore, by equipping roadway workers and vehicles
with DSRC-equipped GPS, both parties can independently
determine a collision likelihood and take corrective action.

We examine the feasibility of GPS-based pedestrian colli-
sion detection by performing trials on an integrated testbed
for vehicle-to-infrastructure and vehicle-to-vehicle technolo-
gies located at the author’s university. Three test cases were
evaluated in which a collision, near miss, and clear miss of
a pedestrian was simulated using roadside GPS and DSRC
units. From this data, a warning system was developed to
determine the accuracy of predicting worker-vehicle collisions
using solely GPS positional data. The results indicate that
a correct warning can be issued 91% of the time and with
approximately 5-6 seconds notice.

II. MOTIVATION AND RELATED WORK

Working alongside motorways and highways is dangerous.
Examining injuries on highway construction projects in New
York between 1993-1997, Bryden and Andrew found that
15% of all serious injuries were caused by vehicle accidents,
two-thirds of which were caused by vehicles straying into
the workzone [10]. These areas are also dangerous for law
enforcement officers and emergency responders. From 2001-
2010, there were 118 law enforcement officers who were
struck by a vehicle and killed. Of these 118 deaths, 37 percent
occurred during duties like traffic stops and road blocks while
the majority (63 percent) occurred while directing traffic or
assisting motorists along the roadway [11]. The BLS also



estimates that approximately six percent of firefighter fatalities
from 1992-1997 resulted from being struck by a vehicle
while either directing traffic or conducting roadside emergency
rescues [2].

With the advent of intelligent transport networks, new
technologies have been created to address roadway injuries
and fatalities such as adaptive cruise control, lane departure
warnings, and automatic braking for collision avoidance [3].
Specific to reducing pedestrian injuries are computer vision ap-
proaches that scan the path of the vehicle for pedestrians. Once
detected the driver can be alerted, automatic breaking applied,
or autonomous evasion maneuvers taken by the vehicle [12],
[13]. Stereo cameras have been used to provide a 3-D forward
view of the road [8], [14], while multiple cameras around the
vehicle can create a birds-eye-view of the surrounding area
to aid in parking lots or other areas where pedestrians may
approach from multiple directions [4].

Like all computer vision applications these approach can
suffer from roadway occlusions such as trees, building, or
other vehicles on the road [7], [8]. Specific to our problem of
detecting roadway workers, work zones can have significant
clutter due to construction vehicles, materials, and movable
barriers. Part-based classification has been attempted to recog-
nize “parts” of a pedestrian rather than a whole person to deal
with occlusions [15] as well as models of pedestrian move-
ment to distinguish people from other objects [16]. Infrared
cameras can also be used to detect the “heat signatures” of
pedestrians [6], [9]. Laser and radar systems have also been
used as they provide highly accurate ranges (up to 135 m at
±5 cm) to forward targets [7]. However these systems can
often be confused by the multitude of objects due to ground
clutter.

While all these approaches can be highly accurate (85%
to 100% at 35 m [8]) they all require line-of-sight to the
target for detection. Roadside workers that are occluded by
dense traffic, construction materials, or around a curve or hill
in the road, will not be detected. Thus we propose to equip
roadside workers and vehicles with GPS units and enable them
to share position information over dedicated short range com-
munications. These local networks can be used in conjunction
with exiting approaches to protect a new class of pedestrians.
Additionally, having both vehicles and roadside workers in
the detection processes enables both parties to develop their
own warning estimates and take independent corrective action.
While GPS positions are less accurate than existing approaches
(approximately 2.5 m for 50% of positions [17]), we will
show in this work how on straight segments of road a GPS-
based system can distinguish between collisions, near-misses,
and total misses with 91% accuracy. This work is largely a
feasibility study and uses the simple case of a straight segment
of road and does not address the more complex issue of curved
roadside detection.

III. PROBLEM FORMULATION AND SOLUTION

In this section we outline our model for estimating roadside
worker and car collisions. The primary metric is to determine
how close a vehicle will approach the worker with sufficient
time to provide a warning to the driver or the worker. We
have assumed that both the worker and the vehicle can know

Fig. 1: Model of Worker Car Collision. Blue dots show the
positions of the worker and vehicle. Yellow and Red circles
indicate the Warning and Alert distances from the worker.

Fig. 2: Three Experimental Scenarios - A (Collision), B
(Warning), and C (None)

their position via GPS and exchange information over some
radio network. Also, to simplify our calculations, this model
is only valid for a relatively straight segment of road. Given
these assumptions, we can visualize this scenario in Figure 1
where a moving vehicle is approaching a worker. The blue
dots represent the known positions of the worker and vehicle.



A. Problem Definition

To warn the worker about a potentially dangerous condi-
tion, the trajectory of the car must be estimated and compared
to the position of the worker. We assume that both the worker
and the vehicle know the position of each other and can
estimate their approach distance. If the car is estimated to
approach too close then an Alert will be issued telling the
worker of an impending danger. If the car will pass close to
the worker, but not at a dangerous distance, a Warning will be
issued. These alerts/warnings are determined by comparing the
linear distance between the vehicle trajectory and the average
position of the worker. In Figure 1 the trajectory of the car is
given by ~v and the position of the worker by (x̄, ȳ, z̄). Given
some vector ~r between the worker and the trajectory ~v, the
shortest distance between the two is simply: d = ||~r×~v||

||~v||

From the exemplar in Figure 1, if the car would pass close
to the worker, within the yellow radius, a Warning would be
issued. If the car passed within a dangerous proximity, within
the red circle, an Alert would be issued. If the vehicle did not
pass close to the worker, no alert would be issued. Figure 2
shows a top-down view of the areas where an Alert or Warning
would be issued. These distances are indicated by the red and
yellow circles around the worker. In the remainder of this
section we will outline the required calculations to implement
this warning system.

B. Estimating Vehicle-Worker Collisions

This section outlines the required calculations to implement
the warning system described in the previous section. We
discuss preliminary calculations needed to transform GPS
coordinates (φ, λ, H) into a more tractable Cartesian system
(X,Y,Z). Also, we describe the required calculations to deter-
mine the location of the worker, vehicle trajectory, and esti-
mated worker-vehicle distance. Finally, a collision detection
algorithm is presented based upon these calculations. Table I
outlines parameters used for these calculations and provides
their default values used in our experiment.

Conversion to Cartesian Coordinates: When using GPS
systems, the position of an object is frequently represented
in terms of Latitude (φ), Longitude (λ), and Altitude (H).
For our collision detection algorithm, these positions must
be converted into a 3-D Cartesian position (X,Y,Z) to allow
for more tractable computation of the vehicle trajectory and
distance. The equations below provide the necessary steps to
transform between the two coordinate systems. Please note the
difference between h, which is altitude relative to an ellipsoid
centered inside the Earth, and H which is altitude relative to
mean sea level [18]. The values, e2 = 6.69437999014 ∗ 10−3,
and a = 6378137, are the eccentricity of the Earth and the
length of its semi-major axis. The function ellipsoidSeperation
is a table defining the relative position between Earth altitude
(H) and ellipsoid altitude (h) at different points on the Earth’s
surface. These equations are adapted from [19].

[
X
Y
Z

]
=

 (N(φ) + h) cos(φ) cos(λ)
(N(φ) + h) cos(φ) sin(λ)
(N(φ)(1− e2) + h) sin(φ)

 (1)

N(φ) =
a

(1− e2 sin2(φ))1/2
(2)

h = H + ellipsoidSeperation(φ, λ) (3)

Determining Worker Position: The position of the worker
is calculated as the centroid (average) of its last known
positions. From Table I positions are remembered for the
last tworker seconds. A larger value of tworker is good for
stationary objects, but will become inaccurate if the worker
moves around. To calculate the worker position, simply take
the average of known positions as shown below. There will be
n = tworker ∗ fw values based upon the frequency of position
updates from GPS and memory of the worker.

(xw, yw, zw) = (

n∑
i=1

xi
n
,

n∑
i=1

yi
n
,

n∑
i=1

zi
n

) (4)

Determining Vehicle Trajectory: The trajectory of the vehi-
cle is determined by finding the best-fit vector from the most
recent vehicle points. This vector is found using Single Value
Decomposition and requires more computation than that of the
worker calculations. Equations (5) through (9) describe this
process.

Let X be a matrix that holds the positions of the ve-
hicle over the last tvehicle seconds. This matrix will have
n = tvehicle ∗ fv rows where each row is a position of the
vehicle in 3-space (x,y,z).

X =

x1 y1 z1
x2 y2 z2
... ... ...
xn yn zn

 (5)

We will use Single Value Decomposition to determine a
vector (~v) that is the best fit through the points in X. Calculate
the mean position of the vehicle (xv, yv, zv) such that:

(xv, yv, zv) = (

n∑
i=1

xi
n
,

n∑
i=1

yi
n
,

n∑
i=1

zi
n

) (6)

Subtract (xv, yv, zv) from each row of X to create a new
matrix A:

A = X−

[
xv yv zv
... ... ...
xv yv zv

]
(7)

Perform SVD on A to generate matrices U, S, and V.
Our implementation used MATLAB using the syntax shown
in equation 8.

[U,S,V] = svd(A, 0) (8)

The columns of V are vectors that fit A. To determine the
correct vector, examine the diagonal of S and find the value
that is maximal, noting the column that the value appears in.
Extract the same column from V to get our best fit vector



Parameter Symbol Default Value Description
dmon 100m Distance at which the worker begins monitoring the position of the car.
dwarn 12ft / 3.65m Approach distance between the car and worker where a warning should be issued.
dalert 6ft / 1.82m Approach distance between the car and worker where an alert should be issued.
tworker 30s Length of time the worker will remember his previous positions.
tvehicle 10s Length of time the worker will remember the position of the vehicle.
fv 10hz The frequency at which the vehicle updates and transmits its position.
fw 10hz The frequency at which the worker updates and transmits its position.

TABLE I: Collision Detection Parameters

Fig. 3: Line fitted to sample vehicle positions.

~v. More formally, calculate s∗i,j = max(S1,1,S2,2,S3,3), then
~v =< V1,j ,V2,j ,V3,j >. ~v is now the best fit vector through
the data in X. A line can now be defined using ~v and
(xv, yv, zv) that fits the data:

l = ~vt+ (xv, yv, zv) (9)

The vector ~v will be used to estimate the vehicle trajectory
and the future distance to the worker. Figure 3 shows an
example of this process where the red line is a linear fit to
a segment of the data shown in blue.

Calculating Vehicle-Worker Distance: From the preced-
ing sections we have calculated the mean worker position
(xw, yw, zw) using equation (4), the vehicle mean position
(xv, yv, zv) using equation (6) and the a vector ~v estimating
the vehicle trajectory using equations (5) to (9). Here we use
those calculations to estimate the future distance between the
worker and the car. Create a vector ~r that connects the worker
centroid to the vehicle centroid as in equation 10. The distance
between the car and the worker is estimated using equation 11.

~r = (xv, yv, zv)− (xw, yw, zw) (10)

d =
||~r × ~v||
||~v||

(11)

These calculations can be combined to create a collision de-
tection algorithm to estimate the likelihood of a worker-vehicle
collision. Algorithm 1 combines the previous calculations into
a collision detection approach. The positions of the worker,
vehicle, and the trajectory of the car are repeatedly updated
to determine their likely approach distance. Depending on the
estimated approach, an Alert or Warning is issued. Otherwise
the algorithm does nothing.

Algorithm 1 Collision Detection Algorithm

1: Convert all (φ, λ,H) into (X,Y, Z).
2: (xw, yw, zw)=CALCULATEWORKERCENTROID
3: (x′, y′, z′)=GETMOSTRECENTVEHICLEPOSITION
4: d = ||(xw, yw, zw)− (x′, y′, z′)||
5: if d ≤ dmon then
6: ~v = CALCULATECARTRAJECTORY()
7: dapproach=ESTIMATEAPPROACHDISTANCE
8: if dapproach ≤ dalert then
9: Issue Alert

10: else if dapproach ≤ dwarn then
11: Issue Warning
12: else
13: Do Nothing.
14: end if
15: end if

IV. EXPERIMENTAL SETUP

To evaluate our warning system, data was collected using
a 2.2 mile integrated testbed for vehicle-to-infrastructure and
vehicle-to-vehicle technologies located at the author’s univer-
sity. Two DSRC radios were used for the study, one attached to
the test vehicle and another that was placed alongside the road
to simulate our “worker”. Each DSRC unit had GPS, DGPS,
and could exchange messages with one another. DGPS was
used to establish ground truth regarding how close the worker
and vehicle approached.

For this experiment three test cases were devised: 1)
a dangerous condition where the vehicle would strike the
worker, 2) a warning condition where the vehicle would pass
sufficiently close to the worker to be concerning, and 3) a
negative condition where the vehicle was sufficiently far away
so as not to pose a danger to the worker. These three positions
are indicated in Figure 2 by the A, B, and C indicators. For
Condition A the vehicle passed directly over the “worker”
DSRC radio. To test this situation without damaging the
DSRC, a boom was attached to the test vehicle that extended
four feet from the vehicle. This configuration allowed the test
vehicle to “run over” the radio without damaging the DSRC
unit. Figure 4a shows the boom extending from the test vehicle
with the “worker” DSRC in the foreground.

In Condition B the worker radio was moved to the edge of
the road. For Condition C the DSRC was moved 12-15 feet
off the roadside. For each condition the test vehicle was driven
past the “worker” unit three times. The vehicle would begin
down the road approximately 500 m away, would accelerate
to 35 MPH, and drive in the lane until it passed the worker.
Once the worker was passed, the vehicle would decelerate and



Intended/Actual Warning Alert None Precision Recall
Warning 304 71 0 0.81 1.0

Alert 0 519 0 1.0 1.0
None 50 0 396

TABLE II: Warning System Confusion Matrix with Precision
and Recall for Warning and Alert Conditions.

return for another trial. Each trial took approximately 30 s.
The tests are as shown in Figure 4.

On-board video, vehicle diagnostics, and position informa-
tion was stored during the trial and analyzed afterwards to
determine accuracy of the warning system. Accuracy is defined
as providing the correct response based upon the parameters in
Table I. Three passes by the vehicle were conducted for each
position (A-C) creating nine trials overall. Two experiments
were conducted in January and February of 2014 providing
18 trials overall. The results presented in this study combine
both datasets.

V. RESULTS

Position data was collected during two experiments in
January and February 2014 using the setup described in
Section IV. The data was evaluated offline using Algorithm 1
to determine the feasibility of using GPS to estimate worker-
vehicle collisions. For each trial run the warning system would
issue a response once per second based upon the estimated
approach distance of the worker and vehicle. These responses
were compared to the actual approach distance as determined
by DGPS. Table 1 shows the confusion matrix generated by
the warning system and compares the intended responses of
the system to the actual ones that should have been issued.
Precision and recall for the Warning and Alert conditions is
reported as well.

Overall Results: The warning system exhibited 91% ac-
curacy for all test conditions, where accuracy is defined as
the percentage of time the system issued the correct response.
When an inaccuracy occurred the system would under-estimate
the approach distance, resulting in a more severe warning than
was actually neccessary. For example, in 50 cases no alert
should have been issued, but the distance between the worker
and vehicle was under-estimated and a warning was issued.
Similiarly, in 71 cases a Warning should have been issued,
but a more severe Alert was produced. While the system was
inaccurate at times, it did not fail to recognize the approach
of a car within the warning distance.

For each data point in Table II, the error in the approach
estimator was calculated and is plotted in Figure 5. This figure
plots closest worker-vehicle approach distance determined with
DGPS versus the estimation approach error. For a perfect
estimator all data points would on the horizontal axis. In this
figure most points lie below the axis, indicating our approach
will typically under-estimate the worker-vehicle distance.

Performance Factors: Analyzing the data in more detail,
several factors affected the accuracy of the results: occlusion
of the worker GPS resulting in loss of position accuracy, and
changes in the vehicle trajectory by the driver. When analyzing
the January 2014 data it was observed that the worker GPS
position had a larger distribution that was anticipated. It was

Fig. 5: Linear estimator error when predicting closest approach
of vehicle and worker.

theorized that a vehicle parked near the worker DSRC had
occluded several GPS satellites, resulting in a loss of precision.
This concern was noted in the February tests with all vehicles
being kept further away and resulted in more accurate worker
positions. The less precise data was retained for the study as
occlusions of GPS satellites may be common in real-world
applications of the warning system.

Another experimental factor was sudden variations of the
vehicle trajectory either due to the driver or the condition of
the road. To allow for testing Condition A in Figure 2, the test
vehicle radio was attached to a boom extending off the side of
the vehicle by four feet. Using the boom, the vehicle could “run
over” the worker in Condition A without striking the “worker”
radio. In a few cases the test vehicle would “bounce” causing
a displacement in its position. A likely location for the error is
when the vehicle transitioned between the bridge and roadway
in the background of Figure 4b.

Impact of Monitoring Distance on Accuracy: A key param-
eter for the warning systems is the distance between the vehicle
and the worker at which warnings are issued. This parameter,
dmon in Table I, was initially set to 100 m for our analysis. At
our test speed of 35 MPH, warnings issued at 100 m would
provide approximately 6-7 seconds of notice. The greater the
distance the warnings are issued, the more time corrective
measures can be taken. However, greater distance allows for
more time for the car trajectory to vary, and predictions made
at great distance may be inaccurate. Figure 6 compares the
accuracy of the responses provided with the amount of time
before the car approaches the worker at a constant speed of 35
MPH. Warnings provided 10s before the worker and vehicle
pass are 91% accurate, but the accuracy quickly falls off as
warning time (and consequently warning distance) is increased.

VI. CONCLUSION

A GPS-based collision detection algorithm for vehicle-
pedestrian strikes has been presented. This initial study exam-
ined whether solely GPS positions could be used to estimate
the approach distance between a roadside worker and an
oncoming car. Experimental results show that the warning



(a) Boom extension to test condition A with “worker” DSRC
shown in the road.

(b) Testing location looking towards the vehicle starting position.
Worker DSRC shown in foreground.

Fig. 4: Experimental setup showing vehicle boom and test site.

Fig. 6: Warning times and accuracy at 35 MPH.

system can distinguish between a near-miss, complete miss,
and collision with a worker with 91% accuracy. Our approach
enables detection of roadside workers in situations where
existing solutions may fail due to visual occlusions or enivorn-
mental conditions. Future work will focus on creating wearble
garments for roadside workers and providing proper responses
to drivers to avoid collisions. Additionally, sensor fusion using
site-based DGPS or wearable intertial measurement units for
workers may improve location accuracy. Finally our collision
detection methods will be extended to more complex road
segments and will allow for greater protection scenarios for
roadside workers.
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