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The Problem: Provenance

e Establishing a history of prior ownership for a coin is difficult

e Important to establish a paper trail of legality that proves a coin was
obtained from its country legally.

e It requires a professional to search through catalogs and build a auction
record

e This type of time commitment is only made for valuable or unique objects

e \What if we could automatically match a coin to its scan in an auction
catalog?
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The Sawhill Collection at JMU

e Collection of 450 Ancient Roman
and Greek coins donated by Drs.
John and Bessie Sawhill in 1976.

e No paper trail establishes where
coins were purchased. But we do
have his catalogs and notes.

e Can ML save time by matching coins
to catalogs?
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Athenian Tetradrachm from 449 - 413 BCE

(c) Gold Aureus of Julius Caesar from 46 BCE (d) Titus Sestertius Judea Capta from 80 CE




Identification Problem: Which Coins (if
any) are an Exact Match?
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Previous Research

e Previous research involving
ancient coins is interested in
motif or portrait class, with
limited work in exact coin
identification.

e \We are interested in
instance-level retrieval: given

a8’/ il 7 \$0 a coin photo, we locate its
exact match in a reference

catalog

Fig. Reverse-motif variability—symbol (red), object (blue), legend (brown).
Source: Anwar et al., Deep Ancient Roman Republican Coin Classification
via Feature Fusion & Attention (Pattern Recognition 2021).



The Approach: Metric Learning or
Classification?

e Metric learning focuses on directly learning embeddings, compact
sets of numbers that capture the key features of the data while
classification focuses on assigning inputs to predefined class labels.

e |t can generalize to new/unseen classes using learned distances;
classification is typically restricted to known classes seen during
training.

e Metric learning approaches have been successful in face recognition,
we are building on that work



Goal: Generalize

Face identification and coin identification have shared goals

e \We want to enforce a certain distance where we can rule out a new
sample belonging to a class

e In order to train a model to do this, you need many photos of the same
face (data points belonging to the same class)

e How do we do this in the domain of ancient coins? There aren'’t large

datasets of various images of the same coin.



Making the dataset with image
augmentations.

e \We have access to a large collection of images of Roman
Republican Coins (29,531 from RRCD & RRC-60)

e No more than one image of the exact same coin, categorized
by coin type, but we want to produce more images of the
same class.

e \We use data augmentation techniques to generate modified
versions of our existing coin images




Model Architecture

e \We use ResNet50, a pre
trained deep convolutional

ResNet50 Model Architecture

g A [Bl5| 35| 35| 3l g2 ow
neural network (CNN) e < BCAEIREIE IR IE AN L1 TS 4 PYS N
e We input the images of coins g A (812|818 18|18 |87 <¢

to produce the embeddings D S G I U R U T S

Stage 1 Stage 2 Stage3 Stage4 Stage 5

@ JAMES MADISON
UNIVERSITY.




Creating Test Data

e ——
e How do we assess the RN 4 Tz 5 N
performance of the model if SRR Y PSS
we don’t have any real life A  EEEaad
examples? R
e Capture images from
Sawhill Collection at JMU. P—
450 Ancient Roman and o W o
Greek coins donated by o2 /
Drs. John and Bessie B VEEN]
Sawhill in 1976 7 “fr//

e Nine photos per coin: three
different lighting variations
and th ree different camera Multiple photos of Silver Denarius of Julius Caesar (R-11)
angles.
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Negative °
Negative Trlplet LOSS
Anchor Leaﬂf Anchor
e A machine learning loss function
> Positive that takes a triplet of training points
Positive e Each triplet contains three data

points: an anchor, a positive (an
augmented image of the same
coin), and a negative (similar coin of
a different class)

e Triplets are found using Triplet
"mining", which focuses on the
smart selection of triplets for
optimization

e Finding good triplets can be costly




Triplet Loss Formula
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Where
e f(x) accepts an input of x and We replace with cosine distance
generates a 128-dimensional - . 148,
vector w similarity(A, B) = cos(8) = TANET =
e /represents the /'th input
e The superscript a denotes an distance = 1 - similarity(A, B)

anchor image, p is a positive
image, and n is a negative image
e a refers to the margin



Triplet Loss Results On Test Data
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folder == model 'triplet_model_extreme_augment_perspective_toned_down_alpha_datasets_9.
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Triplet Loss Results On Test Data

Pair Count

Pos/Neg Distances (cosine) for default ResNet-50
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Pos/Neg Distances (cosine) for ResNet-50 with triplet loss
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Additive Angular

— Close to i Close to
B e B o Margin Loss (ArcFace)
sample g center
Batch \ | Batch A e Alternative to Triplet Loss, biggest
Sample awayfron | SAMPIE " g away from upside: no triplet mining!
E s | - Sje_g?t:e e Enforces a fixed angular margin
S sample b O/ i between classes on a hypersphere
: e Each embedding must sit at least
Triplet ! ArcFace that angle away from different-class
! centers

Fig. Comparison of Triplet and ArcFace loss. Source: Deng et al.,
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
(Pattern Recognition 2018).



ArcFace Loss Formula

Intra-class
Et‘ux{f}yl t111)
cos(f, +m) N cos B,
€ . +‘Zj-l,jf'y.-e s
Intra-class Inter-class

Image illustrating arc/angle margin in the arcface loss function by Yuki
Shizuya in "ArcFace — Architecture and Practical example: How to calculate
the face similarity between images."

Where:
e 6, the angle between the feature vector and the correct class center

6;: the angle between the feature vector and other (wrong) class centers
m: additive angular margin

s: scaling factor (controls how “sharp” the decision boundary is)

y: the ground truth class index

The whole thing sits inside a softmax function, which turns logits into probabilities
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ArcFace Nearest Neighbors

Before

Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5
Query Image Dist: 0.1542 Dist: 0.1550 Dist: 0:1571 Dist: 0.1581 Dist: 0.1585

After

Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5
Query Image Dist: 0.3489 Dist: 0.7852 Dist: 0.7929 Dist: 0.7985 Dist: 0.8002




Model Architecture

e \We use ResNet50, a pre
trained deep convolutional
neural network (CNN)

e We input the images of coins
to produce the embeddings
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ArcFace Results On Test Data

Pos/Neg Distances (cosine) for default ResNet-50

Pos/Neg Distances (cosine) for ResNet-50 with arcface loss
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Triplet Loss vs ArcFace

Pos/Neg Distances (cosine) for ResNet-50 with triplet loss

Pos/Neg Distances (cosine) for ResNet-50 with arcface loss
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Lessons Learned

e Informative validation metrics like cosine similarity of unmatched and
augmented pairs help us track success per epoch.

e Loading images from disk is one of the biggest slowdowns in the
training, it can be helpful to load all of the data into memory first

e Resizing images before augmentation takes a lot of load off the CPU



Project Continuation

e Data preprocessing, RRCD and RRC-60 have duplicate images
o This is partially fixed by looking for exact duplicates (same siQ)
o Issue of removing backgrounds from the images for augmentation,
can be done using Segment Anything (SAM) but very slow
e Sufficient separation of the distribution of positive and negative pairs on
the test data
o More epochs, more data, better augmentations?
e Putting the model to work, quality test data with GUI
o Each data point should have an image & detailed info on coin
e More systematic testing of real world data
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Thank you!

Any questions?
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