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The Problem: Provenance
● Establishing a history of prior ownership for a coin is difficult
● Important to establish a paper trail of legality that proves a coin was 

obtained from its country legally.
● It requires a professional to search through catalogs and build a auction 

record
● This type of time commitment is only made for valuable or unique objects
● What if we could automatically match a coin to its scan in an auction 

catalog?



The Sawhill Collection at JMU
● Collection of 450 Ancient Roman 

and Greek coins donated by Drs. 
John and Bessie Sawhill in 1976.

● No paper trail establishes where 
coins were purchased. But we do 
have his catalogs and notes.

● Can ML save time by matching coins 
to catalogs?



Identification Problem: Which Coins (if 
any) are an Exact Match?



Previous Research
● Previous research involving 

ancient coins is interested in 
motif or portrait class, with 
limited work in exact coin 
identification. 

● We are interested in 
instance-level retrieval: given 
a coin photo, we locate its 
exact match in a reference 
catalog

Fig. Reverse-motif variability—symbol (red), object (blue), legend (brown). 
Source: Anwar et al., Deep Ancient Roman Republican Coin Classification 
via Feature Fusion & Attention (Pattern Recognition 2021).



The Approach: Metric Learning or 
Classification?
● Metric learning focuses on directly learning embeddings, compact 

sets of numbers that capture the key features of the data while 
classification focuses on assigning inputs to predefined class labels.

● It can generalize to new/unseen classes using learned distances; 
classification is typically restricted to known classes seen during 
training.

● Metric learning approaches have been successful in face recognition, 
we are building on that work



Goal: Generalize
● Face identification and coin identification have shared goals
● We want to enforce a certain distance where we can rule out a new 

sample belonging to a class
● In order to train a model to do this, you need many photos of the same 

face (data points belonging to the same class)
● How do we do this in the domain of ancient coins? There aren’t large 

datasets of various images of the same coin.



Making the dataset with image 
augmentations.
● We have access to a large collection of images of Roman 

Republican Coins (29,531 from RRCD & RRC-60)
● No more than one image of the exact same coin, categorized 

by coin type, but we want to produce more images of the 
same class.

● We use data augmentation techniques to generate modified 
versions of our existing coin images



Model Architecture

● We use ResNet50, a pre 
trained deep convolutional 
neural network (CNN)

● We input the images of coins 
to produce the embeddings



Creating Test Data

● How do we assess the 
performance of the model if 
we don’t have any real life 
examples?

● Capture images from 
Sawhill Collection at JMU. 
450 Ancient Roman and 
Greek coins donated by 
Drs. John and Bessie 
Sawhill in 1976

● Nine photos per coin: three 
different lighting variations 
and three different camera 
angles.

Multiple photos of Silver Denarius of Julius Caesar (R-11)



Triplet Loss
● A machine learning loss function 

that takes a triplet of training points
● Each triplet contains three data 

points: an anchor, a positive (an 
augmented image of the same 
coin), and a negative (similar coin of 
a different class)

● Triplets are found using Triplet 
"mining", which focuses on the 
smart selection of triplets for 
optimization

● Finding good triplets can be costly



Triplet Loss Formula

Where 
● f(x) accepts an input of x and 

generates a 128-dimensional 
vector w

● i represents the i'th input  
● The superscript a denotes an 

anchor image, p is a positive 
image, and n is a negative image 

● α refers to the margin

We replace with cosine distance

distance = 1 - similarity(A, B)



Triplet Loss Results On Test Data

Before After



Triplet Loss Results On Test Data



Additive Angular 
Margin Loss (ArcFace)
● Alternative to Triplet Loss, biggest 

upside: no triplet mining!
● Enforces a fixed angular margin 

between classes on a hypersphere 
● Each embedding must sit at least 

that angle away from different-class 
centers

Fig. Comparison of Triplet and ArcFace loss. Source: Deng et al., 
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
(Pattern Recognition 2018).



ArcFace Loss Formula

Where:
● θy: the angle between the feature vector and the correct class center
● θj: the angle between the feature vector and other (wrong) class centers
● m: additive angular margin
● s: scaling factor (controls how “sharp” the decision boundary is)
● y: the ground truth class index

The whole thing sits inside a softmax function, which turns logits into probabilities

Image illustrating arc/angle margin in the arcface loss function by Yuki 
Shizuya in "ArcFace — Architecture and Practical example: How to calculate 
the face similarity between images."



ArcFace Nearest Neighbors
Before

After



Model Architecture

● We use ResNet50, a pre 
trained deep convolutional 
neural network (CNN)

● We input the images of coins 
to produce the embeddings



ArcFace Results On Test Data

Before After



Triplet Loss vs ArcFace 

Triplet Loss Arcface



Lessons Learned
● Informative validation metrics like cosine similarity of unmatched and 

augmented pairs help us track success per epoch.
● Loading images from disk is one of the biggest slowdowns in the 

training, it can be helpful to load all of the data into memory first
● Resizing images before augmentation takes a lot of load off the CPU



Project Continuation 

● Data preprocessing, RRCD and RRC-60 have duplicate images
○ This is partially fixed by looking for exact duplicates (same sig)
○ Issue of removing backgrounds from the images for augmentation, 

can be done using Segment Anything (SAM) but very slow
● Sufficient separation of the distribution of positive and negative pairs on 

the test data
○ More epochs, more data, better augmentations?

● Putting the model to work, quality test data with GUI
○ Each data point should have an image & detailed info on coin

● More systematic testing of real world data



Thank you!
Any questions?
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