
Exploring Electronic Storyboards as
Interdisciplinary Design Tools for Pervasive Computing

by

Jason Forsyth

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Thomas L. Martin, Chair

Edward A. Dorsa

R. Benjamin Knapp

Elizabeth D. McNair

C. Jules White

April 30, 2015

Blacksburg, Virginia

Keywords:Interdisciplinary Design, Pervasive Computing, Electronic Storyboards

Copyright 2015, Jason B. Forsyth

Exploring Electronic Storyboards as

Interdisciplinary Design Tools for Pervasive Computing

Jason B. Forsyth

(Abstract)

Pervasive computing proposes a new paradigm for human-computer interaction. By embedding computation,

sensing, and networking into our daily environments, new computing systems can be developed that become helpful,

supportive, and invisible elements of our lives. This tight proximity between the human and computational worlds

poses challenges for the design of these systems - what disciplines should be involved in their design and what tools

and processes should they follow? We address these issues by advocating for interdisciplinary design of pervasive

computing systems. Based upon our experiences teaching courses in interactive architecture, product design, physical

computing and through surveys of existing literature, we examine the challenges faced by interdisciplinary teams when

developing pervasive computing systems. We find that teams lack accessible prototyping tools to express their design

ideas across domains. To address this issue we propose a new software-based design tool called electronic storyboards.

We implement electronic storyboards by developing a domain-specific modeling language in the Eclipse Graphical

Editor Framework. The key insight of electronic storyboards is to balance the tension between the ambiguity in drawn

storyboards and the requirements of implementing computing systems. We implement a set of user-applied tags,

perform layout analysis on the storyboard, and utilize natural language processing to extract behavioral information

from the storyboard in the form of a timed automaton. This behavioral information is then transformed into design

artifacts such as state charts, textual descriptions, and source code.

To evaluate the potential impact of electronic storyboards on interdisciplinary design teams we develop of user

study based around “boundary objects”. These objects are frequently used within computer-supported collaborative

work to examine how objects mediate interactions between individuals. Teams of computing and non-computing

participants were asked to storyboard pervasive computing systems and their storyboards were evaluated using a

prototype electronic storyboarding tool. The study examines how teams use traditional storyboarding, tagging, tool

queries, and generated artifacts to express design ideas and iterate upon their designs. From this study we develop new

recommendations for future tools in architecture and fashion design based upon electronic storyboarding principles.

Overall, this study contributes to the expanding knowledge base of pervasive computing design tools. As an

emerging discipline, standardized tools and platforms have yet to be developed. Electronic storyboards offer a solution

to describe pervasive computing systems across application domains and in a manner accessible to multiple disciplines.

Acknowledgments

I am indebted to many people for the completion of this work: First, I owe a great deal to the faculty, staff, and

students at the Virginia Tech Institute for Creativity, Arts, and Technology (ICAT). I often describe ICAT as a home

for “misfit engineers and techno-phile artists”. It has been a pleasure to work with Liesl Baum, Jamie Simmons, and

Phyllis Newbill on the K-12 mission of ICAT. Through these experiences I have learned that weeks of work can be

made worthwhile in a single student presentation. To see them succeed is a joy, no matter how difficult administrators

try to stop us. To my fellow conspirators in the Sandbox, Reza Tasooji, Deba Saha, Run Yu, Michael Stewart, Chris

(Orange) Frisina, Kari Zacharias, and Karl Bitkofer, it has been a joy to work, play, and watch Game of Thrones

together.

I am also indebted to my first home in 3015 Torgersen Hall. To the CCMers, Tony Frangieh, David Uliana, Ryan

Marlowe, Andrew Love, Krzysztof Kepa, Shaver Deyerle, and Jacob Couch, thank you for the endless games of

foosball and the numerous escapes from my well-prepared lunch to instead “get happy”. To my fellow e-Textiles crew,

Madison Blake, Jake Dennis, Kristen Hines, Rabih Younes, Ramya Narayan, Karthick Lakshmanan, Robert Lewis,

and Jacob Simmons, thank you for dealing with my lab-consuming clutter. Kristen, you have my permission to clean

the lab. Just leave the monkey.

To my adopted engineering education cohort, Martina Svyantek, Homero Escobar, Lynette Wilcox, Stephanie

Kusano, Cassandra Groen, Chris Ventors, and Marcia Davitt, it took several years but I might finally understand what

a Cronbach alpha is. I will now avoid surveys like the plague. I’m sure grounded theory is easier, right?

Beyond my committee I had the privilege to be guided by several faculty members. The user study could not have

been formulated without the help of Troy Abel. Thank you for your time and patience in shepherding a student from

outside of the department and discipline. To Steve Harrison and Deborah Tatar, thank you for taking me under your

HCI wing and providing advice, guidance, and support of my work. Attending DIS was a treat. To Mark Smith of the

KTH, thank you for our ISWC/Ubicomp burgers and chats and for welcome assistance in my job search.

To the members of my committee: Ben Knapp, Jules White, Ed Dorsa, and Lisa McNair, this work would not be

possible without your insight. Interdisciplinary work cannot flow from disciplinary advising and the perspectives each

of you bring are invaluable. Ben, thank you for captaining the ICAT ship and enabling this type of work to take place.

iii

Jules, your MDE perspective brought rigor to a process that tries to resolve ambiguity. My task would have been much

harder without the framing of models and transforms. Lisa, engaging with engineering education has impacted my

career. Through our research meetings I have examined my own work more systematically and with a fresh perspective

I could not have received from within computer engineering. Ed, thank you for your insights into the design world

and being welcoming of an interloping engineer. The initial ideas for the project came from sketches and storyboards

from within Burchard. I have always enjoyed my time in Architecture+Design and will miss working with you.

To Dr. Martin / Tom, I’m not sure by which name to address you at this point. It is difficult to summarize the last

seven years of work. From the product design class as an undergraduate, to the wearables course, and throughout my

doctoral work, you saw some potential in me that I did not see in myself. You allowed me to wander and discover

work that I was interested in. I do not know how one thanks another for such faith. I respect your work as an educator

and a scholar and hope to follow your example at York.

To Katie, it’s been a long journey eh? I don’t think you knew what you were signing up for when this all began.

All I can say is none of this would be possible without you. Regardless of a good day or bad I am happy to come home

to you. I look forward to our adventures in York and the endless possibilities our future holds.

iv

This material is based in part upon work supported by the National Science Foundation under Grant Number

EEC-0935103. Any opinions, findings, and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the National Science Foundation. Additional funding was

received from the Virginia Tech Institute for Creativity, Arts, and Technology.

Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Overview . 1

1.2 Research Questions and Contributions . 2

1.2.1 Research Questions . 2

1.2.2 Contributions . 3

1.3 Dissertation Organization . 4

2 Background and Related Work 5

2.1 Need for Interdisciplinary Design . 5

2.2 Challenges in Interdisciplinary Design of Ubicomp . 7

2.2.1 Design Materials . 7

2.2.2 Design Processes . 9

2.2.3 Design Tools and Prototyping . 10

2.3 Survey of Pervasive Computing Design Tools . 11

2.3.1 Tool Properties Under Evaluation . 11

2.3.2 Multiple Representations . 12

2.3.3 Event Description . 15

2.3.4 Knowledge Support . 18

2.3.5 Device Support . 19

2.3.6 Integration with Current Practice . 20

2.4 Summary . 22

vi

3 Model-Driven Architecture for Pervasive Computing System 23

3.1 Related Work . 24

3.2 Adopting a Model-Driven Approach . 26

3.2.1 Definitions and Assumptions and Approach . 27

3.2.2 Challenges Using Storyboards . 27

3.2.3 Meta-Models of Pervasive Systems, Electronic Storyboards, and Timed Automata 30

3.2.4 Instantiating Electronic Storyboards in Eclipse GEF . 32

3.3 Model Transform from Electronic Storyboards to Timed Automata 33

3.3.1 Layout Analysis . 34

3.3.2 Global Partition . 35

3.3.3 Local Synthesis . 36

3.3.4 Resolving Behaviors and Generating Design Artifacts . 37

3.3.5 ICON: Storyboard . 40

3.4 Summary . 44

4 Evaluating Electronic Storyboards As Boundary Objects 45

4.1 Introduction . 45

4.2 Modeling Product Design in Pervasive Computing . 46

4.2.1 Pervasive Computing as Balancing Computation, User Interaction, and Physicality 46

4.2.2 Boundary Objects in Collaborative Work and Product Design 47

4.3 Developing a User Study . 49

4.3.1 Study Questions . 49

4.3.2 Experimental Setup . 51

4.3.3 Assumptions and Limitations . 55

4.4 Summary . 56

5 Results 57

5.1 Supporting Design Discussions . 57

5.1.1 Discipline-based Sentiment . 57

5.1.2 Storyboarding . 58

5.1.3 Tagging . 60

5.2 Supporting Design Iteration . 61

5.2.1 Iteration through Queries . 62

5.2.2 Iteration through Code, Text, and State Charts . 63

vii

5.3 Addressing Usability . 64

5.3.1 SUS and Task Times . 65

5.3.2 Reported Tool Benefits . 67

5.3.3 Proctor Intervention . 68

5.4 Assessing Models and Transformations . 69

5.5 Summary . 70

6 Conclusions and Future Work 72

6.1 Reflections and Guidelines for Future Design Tools . 72

6.2 Future Work . 74

6.3 Summary . 77

A Storyboard Compilation 78

A.1 Layout Analysis . 79

A.2 Global Partition . 82

A.3 Local Synthesis . 85

B Development History of Electronic Storyboards 88

B.1 Overview . 88

B.2 Tool Environment and User Input . 88

B.2.1 Version A: Balsamiq Mockups . 88

B.2.2 Version B: Java + Swing GUI . 89

B.2.3 Version C: Eclipse Graphical Editor Framework . 89

B.3 Errors and Warnings . 91

C Publications and External Funding 93

D IRB Approval 94

E Copyright Statements 96

F Bibliography 101

viii

List of Figures

2.1 Taxonomy of Pervasive Computing Domains . 6

2.2 User-Friendly Datasheets . 8

2.3 Buxton’s roles of engineering, design, and marketing during product design [1]. 10

3.1 Elements of a domain-specific modeling language. 24

3.2 Electronic storyboards as a model-driven engineering process. 26

3.3 Elements of a storyboard. 26

3.4 Frame layouts to express different conditional behavior. The numbers in each frame indicate the order

in which they would be “read” by the storyboarding tool. (a) shows linear storyboard frames that are

read left to right. (b) allows for conditional behavior to branch away from the linear layout. (c) uses

arrows to loop back on the storyboard. 28

3.5 Mapping from storyboard objects onto a timed automaton . 29

3.6 Meta-model of a pervasive computing system. 30

3.7 Electronic Storyboard Meta-Model . 31

3.8 Timed Automaton Meta-Model . 32

3.9 Screenshot of electronic storyboarding tool in Eclipse showing an example storyboard, palette, and

properties view. Arrows indicate the type of tagged object and its value. 33

3.10 Example tool compilation process taking into account multiple behaviors and devices. 34

3.11 (a) Sample layout showing local, conditional, and message connections. (b) Frames grouped by geo-

metric proximity. 34

3.12 (a) Resulting graph from Layout Analysis. (b) Cutting message connectors. Inserting events (e) and

actions (a) into the form connecting frames. 35

3.13 Global partitioning of a storyboard graph. State, Event, Action, and Context annotations are indi-

cated with S, E, A, C respectively. NER indicates natural language information from Named Entity

Recognition. 35

ix

3.14 Local Synthesis parsing two branches. 36

3.15 Parsing final branch of local synthesis with missing Event annotation. 37

3.16 State chart generated from storyboard . 40

3.17 Timed automaton derived from example storyboard. Information sources are indicated with dashed

arrows. 42

4.1 Pervasive Computing as a Balance of Properties and Constraints . 47

4.2 Using Boundary Objects . 47

4.3 Participant Storyboard for Prompt 2 . 52

4.4 Transferring paper storyboard from Figure 4.3 into electronic format. 52

4.5 Two frames from a user annotated storyboard indicating State, Event, and Action tags 53

4.6 Three representations generated for user study. 54

5.1 Discipline-based Sentiment . 58

5.2 Use of storyboarding to user interaction, logical flow and responsive actions of the device. 60

5.3 Mis-tagging storyboarding information. 61

5.4 A tagged event with no corresponding action identified by the tool. 62

5.5 Portion of a generated state chart with discovered action “stopbeeping”. 62

5.6 Using statecharts to evaluate design ideas. 63

5.7 System Usability Score . 64

5.8 Time until final storyboard submission for each group. 66

5.9 Typical Prompt 1 and 2 solutions . 67

5.10 Varying solutions for Prompt 3 . 68

5.11 Team Activities by Time . 69

6.1 New model to isolate users from underlying model of computation 73

6.2 Designer sketches of a wearable computing system (courtesy of Mary Lee Carter). 75

6.3 Student project from interactive architecture studio. 76

A.1 Electronic Storyboard compilation process . 78

A.2 Model of storyboard layout . 79

B.1 Initial electronic storyboard in Balsamiq . 89

B.2 Current version of electronic storyboards. 90

B.3 Icon-based storyboard in Eclipse GEF. 90

x

B.4 Eclipse warning about loops in the storyboard. 91

B.5 Message Connector Error . 91

B.6 Single frame block. 92

B.7 Multiple frame blocks detected. 92

xi

List of Tables

2.1 Evaluating Interdisciplinary Tools for Pervasive Computing . 13

3.1 Supported tags for storyboard objects . 28

3.2 Information extraction from an example storyboard (V=verb, A0=direct object, A1=indirect object,

LOC=location, TMP=temporal, PER=person) . 41

4.1 Study Participants . 53

xii

Chapter 1

Introduction

1.1 Overview

“The challenge is to create a new kind of relationship of people to computers, one in which the computer

would have to take the lead in becoming vastly better at getting out of the way, allowing people to just go

about their lives.” [2]

-Mark Weiser

The vision of pervasive computing is a world where computing technology is embedded into the clothes, objects,

and environments of our daily lives. The goal of embedding this technology is to create supportive and helpful

interactions with computer systems that disappear into subconscious use. However, to achieve this subtle and seamless

use of computing systems, the design of pervasive computing systems must expand beyond engineering to include

experts in the domains where the pervasive systems will be deployed. The purpose of this dissertation is to explore

research issues in intellectual tools for supporting interdisciplinary design of pervasive computing systems.

Through our work teaching courses in interactive product design [3], physical computing, interactive architecture,

and through the work of others in interdisciplinary design, we have found that rapid prototyping and generating large

numbers of ideas is key to exploring a complex design space and finding good solutions. Prototyping serves two

important purposes: to gain knowledge of the material and processes used in a domain [4], and to help identify good

solutions in a highly constrained domain [5, p.650]. The speed in which prototypes are created is critical to the design

process as multiple iterations of prototyping often outperform single iterations [6].

This dissertation examines the current state of pervasive computing prototyping tools and finds that current tools

fall short for several reasons. First, few tools support a “shared view” of the design space that will allow users from

1

different backgrounds to concurrently express design ideas. Second, for those tools that do support a “shared view”,

they are either domain specific tools or simplified programming languages. Even a simplified programming language

is a barrier for team members who are not programmers as their understanding of the behavior of the prototype is

solely dependent upon how well they understand the language. Furthermore, domain specific tools cannot handle the

various types of prototypes that could be expected by a design team. For example, tools intended for location-based

systems may fare poorly in creating wearable applications.

This dissertation explores the research issues involved in developing a novel tool that will fit within the interdis-

ciplinary design paradigm for pervasive computing products. This tool will not generate final products, but is instead

intended to generate prototypes and design artifacts that enable the rapid evaluation of design ideas during the prod-

uct’s design and development. Specifically we propose that storyboards, and storyboarding in general, be used as a

design and prototyping medium for interdisciplinary teams. Storyboards convey context, location, action, and tempo-

ral phenomenon [6] [1, p.296] that cannot be expressed by current programming tools. These temporal and contextual

phenomenon are key aspects of the user experience for pervasive systems. Storyboards have been shown to be an ef-

fective communication tool in an interdisciplinary setting [7, 8] and contain sufficient formal structure to be the basis

for several existing programming tools [9, 10, 11, 12]. Furthermore, storyboards incorporate drawing into the design

process. Drawing is a fundamental aspect of design [1, p.95], and through drawing, designers can envision and work

out problems [13].

1.2 Research Questions and Contributions

We examined electronic storyboards through our own teaching experiences, surveys of existing literature, and a us-

ability study. This section outlines specific research questions addressed in this dissertation and the subsequent contri-

butions.

1.2.1 Research Questions

RQ 1: How are the needs of interdisciplinary teams supported by current pervasive computing design tools?

Chapter 2 outlines challenges faced by interdisciplinary teams when developing pervasive computing systems and

identifies difficulties in design materials, tool, and processes. Recognizing the importance of prototyping to the success

of interdisciplinary teams, we conduct a survey of existing pervasive computing design tools and find that many fail to

meet the requirements for interdisciplinary teams. We propose electronic storyboards as a solution to these problems

and explore their implementation in the next research question.

2

RQ 2: How can information in storyboards be extracted to create design artifacts?

Chapter 3 outlines a model-driven approach to developing electronic storyboards. A domain-specific modeling lan-

guage is developed in Eclipse [14] to explore how information in storyboard layout and content can be extracted to

produce design artifacts such as source code, state charts, and textual descriptions. A multi-device model of pervasive

computing systems is presented to capture a range of pervasive interactions. A timed automaton model of computation

is used to capture storyboard information and derive design artifacts.

RQ 3: What is the impact of electronic storyboarding on interdisciplinary teams during prototyping?

Chapter 4 examines team collaboration with electronic storyboards using boundary objects. These objects have been

studied extensively in computer-supported collaborative work (CSCW) and are extended to pervasive computing de-

sign to examine the efficacy of electronic storyboarding for interdisciplinary teams. Chapter 5 examines the results of

the study and shows how electronic storyboards support design expression and reflection for interdisciplinary teams.

Additionally, we evaluate the models described in Chapter 3 and provide guidelines for future design tools in Chap-

ter 6.

1.2.2 Contributions

Overall this dissertation makes two contributions. First, it contributes to the discussion regarding the forms and

affordances of pervasive computing design tools by advocating storyboarding as an accessible and interdisciplinary

design tool. Following the guidelines from Dow et al. [6] we show how electronic storyboards support the “multiple

views” requirement for pervasive design tools. Furthermore, our research attempts to answer Gregory Abowd in his

critique of pervasive computing where he asks, “What is [pervasive computing’s] Hypercard?” [15], in reference to

the successful programming language for desktop environments. This discussion is important to pervasive computing

as the field matures thereby making the vast “invisible computing” vision of Weiser [16] ever more tangible. However

the field currently focuses more heavily on mobile computing to the exclusion of further hardware development [17].

The dissertation advocates for more development of novel pervasive systems to more fully explore the potential design

space.

Second, this dissertation provides methods for iteratively refining ambiguous specifications while keeping human

expertise in the loop. As electronic storyboards are “compiled” the user is repeatedly queried as to which information

is important to defining the device’s behavior. This approach can be extended to additional areas where model trans-

formations are “misaligned” between different sets of knowledge. Different meta-models may be required but our

approach of domain-specific annotations coupled with natural language processing and user queries can be applied to

partial models [18] and situations where other software specifications must be refined.

3

To aid these arguments we make several technical contributions:

1. An information extraction method for deriving timed automata from storyboards. In Chapter 3 we define a

domain-specific modeling language for electronic storyboards and implement model transformations to derive

timed automata from those storyboards. Information extraction and transformation presents new methods to

handle ambiguity in storyboards and iteratively queries the user to resolve missing or ambiguous information.

2. An analytical model of pervasive computing prototyping using boundary objects to examine the efficacy of

electronic storyboards for interdisciplinary teams. In Chapter 4 we present a model of pervasive computing

based upon three properties: computation, user interaction, and physicality. We examine how those properties

are expressed by teams when using electronic storyboards as boundary objects. By examining what information

teams “push” into the boundary object, e.g. what they draw and tag during the user study, and what discussions

take place during the study, we can assess the impact of electronic storyboards on the study tasks.

3. Best practices and development guidelines for future interdisciplinary tools. Based upon the results of the user

study in Chapter 5 we provide guidelines for future tools similar to electronic storyboards that infer design

artifacts from informal sketches and storyboards. We advocate for the importance of free-form sketching in

future tools, further isolation of the end-user from underlying models of computation, and further refinement of

UI elements rather than tool outputs.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 outlines the challenges faced by interdisciplinary

teams while developing pervasive computing systems. We identify the need for prototyping tools that help establish

a shared language and can work in a general setting. Addressing these issues we propose electronic storyboards.

Chapter 3 describes our model-driven approach to developing pervasive computing systems. We present a model based

upon timed automata and provide an information extraction method to derive automata from storyboards. Chapter 4

models electronic storyboards as boundary objects to evaluate their impact on interdisciplinary teams. Using these

shared artifacts we develop a user study to determine how electronic storyboards support design discussions and

iterations. Chapter 5 presents the results of a user study with six interdisciplinary teams and analyzes support for

design discussions and iteration, assesses general usability, and determines the efficacy of our underlying models.

Finally, we conclude in Chapter 6 with a summary of this work and look towards future research.

4

Chapter 2

Background and Related Work

This chapter addresses Research Question 1 by examining the needs of interdisciplinary teams and the support offered

by existing design tools. More specifically, Section 2.1 describes the origins of pervasive computing and advocates

for interdisciplinary design of pervasive systems. Section 2.2 identifies specific challenges faced by interdisciplinary

teams due to unfamiliar design materials, differing design processes, and motivates the importance of prototyping.

Section 2.3 examines the current state of pervasive design tools. Finally, Section 2.4 summarizes our findings and

proposes electronic storyboards that will be discussed in the next chapter1.

2.1 Need for Interdisciplinary Design

Pervasive computing has been a driving vision for computing research for nearly 20 years. Pervasive computing

was first described by Mark Weiser in which he put forward a world fully embedded with sensing, computation,

and networking [20]. What is revolutionary about Weiser’s vision is that embedding computing into our clothes,

environments, and daily lives, can be calming. Since that time technological advances in inexpensive wireless networks

and embedded computing have provided a platform on which to build pervasive computing [21].

Pervasive computing can be viewed as the convergence of distributed systems and wireless computing. Technolog-

ically it retains the challenges of those disciplines, but inherits several new challenges such as smart spaces, invisibility,

localized scalability, and masking uneven conditions [21]. Of these research challenges, what remains elusive is the

calming, or “invisible” use of computing. Historically as technologies become adopted and more refined they move

into the periphery of our attention [16]. The use of the technologies becomes subconscious and is only noticed if

something is absent or amiss. Examples of technologies that have moved into periphery include electricity, motors,

and writing. Each of these technologies can be used effortlessly and are only brought to our attention when they

1Portions of this chapter are based upon the author’s work in [19] and are reproduced here under copyright permitted by Emerald Publishing.

5

Figure 2.1: Taxonomy of Pervasive Computing Domains

are absent or do not work [20]. The goal of pervasive computing is to make interactions with computing technology

as subconscious, or invisible, as these current technologies. Weiser said that our computers should be “an invisible

foundation that is quickly forgotten but always with us, and effortlessly used throughout our lives.” [22].

Creating these “invisible” interactions requires detailed knowledge about the needs and desires of the end user.

To understand these needs, designers of pervasive systems must “uncover the very practices through which people

live and to make these invisible practices visible.” [23]. We believe that achieving invisible interactions requires an

interdisciplinary approach that includes not only researchers and engineers, those who develop pervasive technologies,

but also practitioners in the humanities, arts, and design. It is this later group who are trained in understanding human

behavior and the subconscious motivations and interactions of the end user [2, 22]. Working in an interdisciplinary

setting reflects the foundations and goals of pervasive computing by combing a revolution in technology with a focus

on human experience that makes human-computer interaction calming and supportive.

To properly implement pervasive systems they must be designed to address human needs and concerns. It is not

enough to possess the proper technology to create these systems, but that technology is employed in a well designed

manner that creates enjoyable, useful, and appropriate interactions. Design requires an understanding and balancing

of relevant constraints to find a proper solution [5]. In addition, the vast scale of pervasive computing means this

design will happen across multiple domains including fashion, industrial design, architecture, and urban planning.

While computer scientists, engineers, and technologists may possess the knowledge to implement pervasive systems,

they may not possess the domain-specific knowledge at each of these scales of interaction required to bring human

concerns to the forefront of design. These technical experts must collaborate with domain-experts within these scales

to address both technological and human constraints that are required for successful design. In short, the design of

pervasive systems must be interdisciplinary.

6

While interdisciplinary design is not a widely recognized requirement for pervasive computing, it is a logical ex-

tension of the field. Because pervasive computing deals intimately with the physical and human world, the existing

areas of pervasive research tend to align with traditional design domains. If we consider Weiser’s scales of inch, foot,

and yard [20], these “computing scales” roughly align with active research areas regarding wearable, tangible, and

ambient interactions. Continuing our analogy, those three disciplines and interaction scales, also align with the prac-

tices of fashion design, industrial design, and architecture. Combining these elements on a single axis and extending

it to include large scale cyber-physical systems provides a taxonomy of pervasive computing shown in Figure 2.1.

This taxonomy provides natural associations between engineering and design disciplines. This close association is

most frequently displayed in the wearable computing community in which fashion and textiles professionals are a

common presence. Having outlined the need for interdisciplinary design, we discuss some of the challenges faced by

by interdisciplinary teams in the next section.

2.2 Challenges in Interdisciplinary Design of Ubicomp

In this section, we outline three areas of difficultly for interdisciplinary design. First, we discuss the need for all

parties to have an understanding of the “materials” used. Second, we discuss disciplinary differences in problem

solving that can cause difficulty between engineering and design. Finally, we highlight the importance of prototypes

and prototyping tools for achieving better design outcomes.

2.2.1 Design Materials

“The technical terms used by engineers are not the normal language of the industrial designers - indeed

they may find them meaningless. Industrial designers, on the other hand, express their ideas and describe

materials in ways that, to the engineer, sometimes seem bewilderingly vague and qualitative” [24].

-Materials and Design, 3rd Edition

Design is a conversation with materials [25]. Through sketches, diagrams, models, and prototypes, designers

concurrently “see” and evaluate design solutions [13]. This conversation is “reflective” and the materials “talk back”

with new insights and realizations [26, 27]. For pervasive computing systems, this conversation involves materials

that may be foreign and unknown to designers. Given the embedding of technology into daily lives, one may believe

they understand it, however many hold incorrect “folk theories” about technology based upon marketing, television,

or social connections [28]. It is equally likely that engineers or scientists would have difficulty working with wood,

7

Figure 2.2: User-Friendly Datasheets

metals, or plastics of traditional design materials. Furthermore, scientists and engineers are not trained to understand

the human-dimensions of design.

Because the computational, physical, and user experience of a pervasive system are tightly bound, all participants

on a design team must have a “shared view” of the design space, that is, computing and non-computing team mem-

bers must have a sufficient understanding of how their design choices impact the performance of the overall system.

Having a shared view of the design space is important in prototyping as each discipline has concerns that must be

expressed. While non-computing participants do not require the same level of technical understanding as engineering

team members, they still require a certain level of abstraction to understand why the prototype behaves the way it does.

Having the proper level of abstraction about the operation of the system allows team members to reason about why a

behavior did not work. Additionally, when prototyping the systems, the non-technical members can be involved in the

creative process instead of simply instructing the engineer about the desired behaviors.

We personally encountered this problem while teaching an interactive product design class for senior-level mar-

keting, industrial design, and computer engineering students [3, 29]. One solution to establishing a “shared view” was

Arduino-based prototyping exercises, led by computing engineering students but aimed at the marketing and indus-

trial design students. Each team was provided an initial “dull” prototype and was challenged to create a children’s

8

toy. Teams were provided “user-friendly” datasheets to help explain the abilities offered by the prototype’s sensors.

A sample datasheet is shown in Figure 2.2. This exercise helped non-computing participants develop a sense of the

potential of pervasive computing systems.

2.2.2 Design Processes

“Like the sirens who tried to lure Ulysses to destruction, these myths lead us to the false assumption that

we can adopt a process that will take us along a straight path from intention to implementation [1].”

-Bill Buxton

Another challenge working in interdisciplinary design is nature of design problems and the different problem solv-

ing processes employed by science, engineering, and design disciplines. Design problems are “wicked problems” that

are often poorly specified or ill-defined [30]. As examples, design problems such as “juvenile diabetes”, “workplace

wellness”, and “home energy efficiency” admit many solutions, constraints, and evaluation criteria. Design problems

are in contrast to traditional science and engineering problems which postulate a set of rules or hypothesis to generate

a solution. Often based upon the constraints selected, there is one “correct” solution, whereas in design there might

be a variety of acceptable solutions. Schon describes these two problem types as “problem setting” versus “prob-

lem solving” [26]. In product design, Buxton contrasts the two as “getting the right design” and “getting the design

right” [1, p.78]. In addressing these two problems, design and engineering employ different problem solving methods.

Summarizing Cross [30, p.19] and Lawson [31], design thinking is “abductive” or “appositional” and adopts solution-

focused methods to generate and test ideas whereas scientific thinking is “deductive” and “inductive” and adopts a

problem-focused approach. One does not naturally adopt a particular mode of thinking, but the approach is learned

through training and education.

In a product design setting such as our interdisciplinary product design class [3], both “problem setting” and

“problem solving” is required. Teams must identify a compelling product to create but also determine one that is

feasible to implement. While each problem will have different signficance during the process, there is no explicit

transition or handover between “solving” and “setting”; likewise there will always be insight and engagement with

design and engineering. Buxton [1] provides a graphical representation of how these roles change during product

design in Figure 2.3. As design and engineering are always active elements of the process, the disciplinary framing and

problem solving methods these disciplines may come into conflict. Given engineer’s high uncertainty avoidance [3],

they may quickly seek solutions to problems before all alternatives are tried [4]. Adopting a solution too soon can

be damaging for the design process as the more prototypes developed over time, in general the better the design

outcome [32].

9

Figure 2.3: Buxton’s roles of engineering, design, and marketing during product design [1].

We personally observed difficulties between these two problem solving methods during our product design class.

During the ideation phase, engineering students would frequently latch on to a potential solution or criticize new

ideas prematurely. To address this problem, we prohibited engineers from saying “no” to idea for technical reasons

or deciding on a solution for several weeks. This restraint helped protect new ideas and allowed a variety of potential

solutions to move towards prototyping. We discuss the importance of prototyping in more detail in the next section.

2.2.3 Design Tools and Prototyping

“I believe that if we think about people and then try, try, and try again to prototype our designs, we stand

a good chance of creating innovative solutions that people will value and enjoy.” [5, p.643]

-Bill Moggridge

From Buxton’s diagram in Figure 2.3, the role of engineering and marketing become more prominent towards the

end of the design phase. During this period, teams are realizing their ideas into prototypes to evaluate potential design

ideas. Prototypes take many forms that range from sketches about a product concept, to foam models examining form,

and interactive prototypes to experiment with different behaviors. Regardless of their differences, each prototype

helps to realize and examine an important aspect of an idea. Producing large number of prototypes is critical to

achieving positive design outcomes. In creating prototypes, the design team becomes more familiar with the materials

and processes of the design domain [4] and helps identify solutions in a highly constrained environment [5, p.650].

This process of repeatedly producing, examining, and re-evaluating prototypes continues until intuition takes over and

people begin to engage with the prototype, rather than critique [5, p.726].

10

Buchenua and Suri identify three different kinds of prototypes: “looks like”, “behaves like”, and “works like” [33].

With pervasive computing products being a close coupling of user experience and technology, prototyping “behaves

like” and “works like” aspects of a product are important. While tools have been developed for interdisciplinary

teams to prototype interactive behaviors, often these tools require all members of the team to learn a programming

language or only work within a narrow application domain. The lack of appropriate tools affects the design cycle, and

the product itself, by increasing the time between prototypes and limiting the number of prototypes when under time

constraints. Given the importance of prototypes, and consequently prototyping tools, we evaluate their current status

in the next section.

2.3 Survey of Pervasive Computing Design Tools

Having established the motivation for interdisciplinary design of pervasive computing, we now present a broad survey

of existing pervasive computing tools. The metrics for these tools are largely informed by the work of Dow et al.,

who conducted a survey of practicing designers to determine desired tools’ properties [6]. We have condensed their

seven categories into five to better represent tool properties of interest and have expanded the understanding of several

categories by creating subcategories. In general these guidelines cover the topics of (1) how to design an interactive or

pervasive application, (2) how events are defined within that application, (3) how to understand the abilities of sensors

and which ones are available, (4) how these tools support different hardware platforms or simulations, and (5) what

existing design practices are supported within these tools. These five categories are shown in Table 2.1 with the listing

of each tool and which properties are supported. In Section 2.3.1, we describe the tool properties to be evaluated. In

Sections 2.3.2-2.3.6, we describe how existing tools meet these properties.

2.3.1 Tool Properties Under Evaluation

Multiple Representations: A key difficulty in interdisciplinary design is the “language” or representation used to

express a design. Often interactive products are created using a textual programming language, which is familiar to

the engineers, but unfamiliar to the designers. Having multiple, and possibly simultaneous, representations of a design

overcomes this problems by allowing all members of a design team to participate in the design of an application and

have a view that is suited for them. Additionally, multiple views can combine the benefits of different programming

representations. For example, visual programming and data flow metaphors are better suited to describing continuous

actions, while traditional sequential programming is appropriate for conditionals. We will review three instances of

this property including tools that allow simultaneous visual/textual, state charts/textual representations, and tangible

representations.

11

User Defined Events: Pervasive applications depend heavily on sensor data gathered from the physical world.

These physical events can be as simple as the state of a switch, or they can be more complex events such as the

classification of an activity. Regardless of the event in question, fusing sensor data into meaningful information is

a difficult task. For simple events, thresholds can be set on sensor data, but more complex events must be analyzed

with machine learning algorithms. Several tools have developed methods to aid in synthesizing events from complex

sensor data. We examine tools that allow events of interest to be demonstrated by the user, expressed through natural

language, constructed using signal processing data flows, and delivered to the application through the use of a context

infrastructure.

Knowledge Support: Combining sensing and computing introduces a new material into the design process that is

unfamiliar to non-computing experts (Sec. 2.2.2). Dow et al. motivates this category by discussing how professional

designers require information about current and upcoming technologies to inform their design. Additionally, when

performing collaborative design, all parties must understand how the underlying technology behaves. Under this

guideline we examine two sets of tools that allow non-engineering practitioners to learn about new technologies

through play and hands-on experience, as well as customized data sheets tailored for non-engineers.

Testing and Device Support: Depending on the scale of a pervasive system, it may not be possible to have all

devices or services present during design. Still, the system will need to be tested using real or generated events. This

supports the creation of light-weight prototypes that are not fully formed, and more finalized designs that must be

simulated. Within this guideline we examine pervasive tools that support device emulation, simulation of pervasive

spaces, and provide Wizard-of-Oz methods to generate input for a design.

Integration with Current Practice: Finally, we examine tools that integrate current design practice into creating

pervasive applications. This approach keeps designers within the normal realm of design and lowers the barriers to

implementing interactive systems. Here, we examine practices that leverage existing design practice through foam and

paper prototyping, sketching, storyboards, and textile fabrication. Additionally we look at existing computing practices

that have been recently adopted into design, namely Processing [34] and the Arduino family of products [35].

2.3.2 Multiple Representations

As described in Section 2.2.1 and by Dow et al., a desirable property of a design tool is to provide a shared view of the

same design. This shared view can take several forms: either there are multiple design languages that describe the same

design, or there are multiple lenses from which the design can be viewed. The first approach, multiple languages, is

generally achieved by having programming languages that allow increasing levels of abstraction that hide lower-level

implementation details. A shared view has a single underlying program but can be viewed or expressed in different

12

Table 2.1: Evaluating Interdisciplinary Tools for Pervasive Computing

Tool Name Multiple Representations Event Description Knowledge Support Device Support Current Practice
dTools [36] • • •
Sketchify [37] • •
Activity De-
signer [38]

• • •

Topiary [39] • •
Papier-Mache [40] • •
Lingua Franca [41] •
ESPrantoSDK [42] •
iCATch [43] •
TileScript [44] •
Modkit [45] •
aCAPpella [46] •
Bosu [47] • •
CAMP [48] •
Ubidesigner [49] •
iCAP [50] •
GART [51] •
CRN Toolbox [52] •
VisualRDK [53] •
Phidgets [54] •
xTel [55] •
iStuff [56] •
PTK [57] •
Inspirational
Bits [58]

•

User-Friendly
Datasheets [29]

•

Ubiwise [59] •
DiaSim [60] •
Tatus [61] •
Calder Toolkit [62] •
Arduino [35] •
Processing [34] •
Lilypad Ar-
duino [63]

•

Ex-A-Sketch [64] •

13

ways. Each feature is useful in interdisciplinary design. In this section we describe three different manifestations of

this property. The sub-categories we consider are: visual/textual, state chart/code, and tangible programs.

Visual & Textual Representations

These tools generally provide a set of blocks that can be connected together to write a program. This visual program

is directly linked to or produces a textual representation of the program. This shared view allows novice programmers

to code with the visual blocks, but also allows a more experienced programmer to write code in the same environment.

Tools that exhibit this property are Lingua Franca [41], EsprantoSDK [42], iCATch [43], and ModKit [45][65].

Generally high-level functions are encapsulated into visual blocks that are connected either through a puzzle-piece

metaphor, such as with EsprantoSDK and Modkit, or linked together in a dataflow manner such as LinguaFranca and

iCATch. The puzzle-piece can be constructed to ensure only related blocks can fit together thereby reflecting syntax

restrictions that are present in the underlaying language. For example, a piece that reads a value from a sensor might

be shaped such that it could only be connected to a variable block in which to store the sensor reading. Dataflow

languages do not necessarily have this ability, but syntax can be enforced with proper type checking when values are

passed between blocks.

In addition to these two forms, EsprantoSDK provides a middle “macro” layer that exists between its visual and

textual representation. This marco layer is intended as a middle step for domain experts who know the functions they

want to use but do not want to program in a full textual language. For example, the macro drawTiles will take a list of

coordinates and display tiles on the screen. Using this macro provides more flexibility than the visual language but is

not as complex as the underlying textual language.

States & Code

Sketchify [37] and dTools [36] provide two representations of a program in the form of state charts and traditional

textual programming languages. dTools allows the designer to describe the behavior of a prototype using statecharts

where each state is a visual representation of the prototype at that point in time. Items such as buttons, sliders, and

LEDs can be visually represented on the sketched layout of the prototype. Similarly, Sketchify allows designers

to sketch graphical interfaces and define the transitions between these interface views. For each tool, the visual

representation describes a particular state of the prototype at a given point in time, and combined with the transition

sequences, is approximate to a state machine. Underlying each visual representation is textual language that offers

more explicit control. Within dTools each state can be extended by using Java APIs that provide access to key events

such as entering or exiting a state, or when a sensor value is updated. Similarly, states in Sketchify can be replaced

with scripting “spreadsheets” to allow greater control of state behavior.

14

Tangible

An interesting representation for interdisciplinary teams are tangible programs where the program logic and behavior

has a physical representation. One example, Tangible Programming Bricks [66], allows users to stack LEGO bricks

to form a program. Each brick represents a single function, such as count, add, or display, that can be executed

by the program. To allow customization of the program, additional cards could be inserted to allow variables or

parameters. A similar approach using blocks that link together has been used to make a physical representation of the

Lego Mindstorm Quetzal language [67]. A particular advantage of the approach in [67] is the use of coiled wires to

link separated blocks of code allowing for the introduction of conditional statements. Finally, Boda Blocks [68] allows

exploration of cellular automata by combining a visual rules interface with stackable color changing blocks. The color

of the block indicates its current state and allows the user to view immediate feedback about their created rules.

Discussion

A particular issue when using multiple representation is the amount of linkage or coupling between the two represen-

tations. Given two representations, is there a direct transformation from one to the other, or does one representation

hide details from the other? For example, all three expressive layers in EsprantoSDK are directly linked such that

changes in one layer (visual, macro, or textual) are directly reflected in the other. Alternatively, states within dTools

can be augmented by Java code, but this argumentation is not reflected in the visual layer because the visual form is of

the physical prototype and not its behavior.

Neither approach is inherently better than the other but the issue of linkage must be taken into account when

designing multiple representations. Providing a direct link between all programming layers could become cumbersome

if low-level details or other elements that don’t directly affect the prototype’s behavior must be shown. However,

propagation of information between layers is key to maintaining a shared view. The question of what information

should be propagated is largely based upon the purpose of each layer. Low levels details, such as a selected processor

or sensor, need not be expressed in higher layers unless that choice impacts the behavior of the prototype. Selecting a

slower processor might be necessary to reduce power consumption, but that change should be reflected in additional

layers if performance is impacted.

2.3.3 Event Description

Pervasive systems are implicitly and explicitly interactive. As such, a majority of their behavior is predicated on

gathering and processing sensor data. Depending on the complexity of the physical event, creating meaningful events

from the raw sensor data might be a difficult task. For simple applications the event may be recognized by a sensor

value passing a threshold, as in monitoring temperature. However, more complex events, such as activity or context

15

recognition, need detailed signal processing that may require expert knowledge. In this section, we overview four

different approaches to the definition of events. We overview methods in demonstration, natural language, data flow

programming, and APIs.

Demonstration

Defining events by demonstration requires that the user, or set of users, perform the activity and passes that information

to a training algorithm for classification. For demonstrated events, the user must segment the data and indicate to the

system the beginning and end of the desired activity. This is accomplished in dTools [36] through a foot pedal, which

when depressed, indicates the activity is occurring. Alternatively, a CAPpella [46] requires that the user review streams

of data that are aligned with already recognized activities that have been observed in a room of interest. The user then

indicates which input streams are relevant to the recognized activities and which activities should be performed. Once

the activities have been annotated, the tools use machine learning algorithms to learn the appropriate responses. dTools

uses Dynamic Time Warping and a CAPpella uses Dynamic Bayesian Networks.

For dTools and a CAPpella, learning by demonstration is a feature of a larger programming platform; however, for

certain programs, the demonstrated activity is the program itself. This is the case for Bosu [47] which is a toolkit for

physically responsive applications. Bosu modules are different shapes embedded with a shape memory alloy that can

record and playback interaction that has been demonstrated on them. A user can take a module, perform the desired

behavior, and playback the behavior by pushing a button on the module or using a remote control.

The benefits of the demonstration approach is that users can quickly define arbitrary events and focus on the

overall behavior of the prototype. Having only a limited set of events might be restrictive for some designers [69].

Underlying these Demonstration techniques is a machine learning algorithm that performs the recognition. If the

event of interest is not suitable for that algorithm, then this approach will fall short. Furthermore, machine learning

algorithms insert ambiguity into the event description as each algorithm is subject to recognition errors. To avoid these

situations some indication must be provided to the application designer that reveals the inner state of the algorithm,

such that they can better train the recognizer. Ongoing research in interactive machine learning is seeking to address

these issues [70, 71, 72, 73].

Natural Language

Natural language approaches to event description construct sentences that describe events of interest to the application

designers. These tools create rule-based systems that operate on a fixed vocabulary or rule structure to derive the

intended behavior. Tools that exhibit these properties are CAMP [48], Activity Designer [38], Ubidesigner [49],

Topiary [39], and iCAP [50].

16

Generally the structure of the rules created are of the form “If <event> then <action>”, where the events and

actions are selected from a set of pre-determined actions. Each tool provides a rule-editor that allows the events and

actions fields to be specified with system defined events.

For each of these tools, the ease of constructing natural sentences comes at the expense of having a limited “vo-

cabulary”. Within CAMP there is a limited set of interrogative words based around “Who, What, Where, When, Why”

objects or events that the system understands. New words can be created but they are based on existing words provided

by the system. Additionally, most rules are resolved to Boolean values such that the statement is true or false.

For many events or applications this Boolean resolution cannot be achieved because the system can only have a

probabilistic understanding of whether an event has occurred. Activity Designer attempts to resolve this problem by

allowing statements to include ambiguity in their construction. This “certainly threshold” can take the form of an

event being “likely”, “unlikely”, “very likely”, which helps retain the ambiguity present in the system and provides

the designer and user alike with better insights into the underlying nature of the program.

Signal Processing Blocks

Another approach to defining events is to allow the user to conduct their own data collection and signal processing

but provide modular blocks to perform elements of activity recognition, such as filtering, signal segmentation, and

training. GART [51] provides Java API calls that allows access to sensors, machine learning algorithms, and libraries

to store recorded data. Similarly, the CRN Toolbox [52] provides a set of data flow blocks that provide similar abilities

to GART, but are based in a visual programing language.

While blocks that segment data streams, train classifiers, and run activity recognition are very useful, they are only

useful to those who are already familiar with the theory and practice of signal processing. These approaches are useful

for practitioners in the field, but they may not be ready for interdisciplinary design teams that will require instruction

and guidelines on how to create recognition applications.

Infrastructure/API

A different approach to dealing with events is to remove the user entirely from their definition. Many tools treat

context and activities as events that are defined by another entity and are then provided to the user. Receiving, or

being notified of an event, takes the form of asking an operating system or some other “context server” to notify or

broadcast when an event occurs. The acquisition, reasoning, and delivery of context is performed elsewhere, but from

the perspective of the application designer, context is a response to an event or API call. The tools that follow this

paradigm are Context Toolkit [74], VisualRDK [53], Papier-Mache [40], Phidgets [54], iStuff [56], PTK [57], and the

popular Android platform [75].

17

Some tools allow more access and control to the delivery of context than others. The Context Toolkit is a framework

for determining and delivering context, but context is viewed as an event from the application designer’s perspective.

Similarly, iStuff has an event switch board that ties together input and output events. Other tools, such as VisualRDK,

do not attempt to resolve context, they simply rely on another service to deliver the events. These approaches provide

different levels of user involvement depending on their needs and experience in defining and creating context.

Overall the separation of concerns between generating and delivering context allows for more modular and stan-

dardized context applications. Delivering context as events or callbacks within a tradition programming language

(such as within Java in the Context Toolkit) lowers the barrier of entry to developing context applications. Users who

are already familiar with the language can now build context-aware applications. However, the drawbacks begin when

the delivered context is not the desired information or is not suited for a particular application. In this case, the context

recognition algorithms will need to be re-evaluated, which may present significant difficulty.

2.3.4 Knowledge Support

To effectively design in a domain one must have hands-on knowledge of the materials and processes (tools) of that

domain [4]. While many of the tools we have surveyed provide means to construct pervasive applications, many

potential users are unfamiliar working with computing and sensing elements. To overcome these problem, first the

design teams must understand the basic properties of the computing and sensing elements they are using. Furthermore

people often hold incorrect assumptions about the abilities of certain technologies, based on marketing, television or

social connections [28]. Here we review two approaches that endeavor to teach non-experts about computing and

sensing elements.

On way to gain knowledge about the material is though hands on prototyping. Martin et al. conducted a short pro-

totyping exercise with interdisciplinary teams of undergraduate students convey the abilities offered by computing and

sensing elements [29]. Unique to their approach is that each prototyping team was given a “user-friendly datasheet”

that explained the abilities of each sensor in terms that all team members could understand. Each data sheet described

the sensors or actuators in terms of “What It Does”, “How It Works”, “What It Tells You”, and listed the available

functions to control or receive information from the sensor. An example of these datasheets is shown in Figure 2.2.

A different approach to hands-on prototyping is to provide ready-made examples about certain technologies. In-

spirational Bits [58] exposes potential users to the properties of technologies through demonstrations. One particular

demonstration exposed the range and sensitivity properties of RFID tags through a dice game where one side of the

dice was embedded with a RFID tag.

18

2.3.5 Device Support

Design tools must support practices that allow debugging and testing of pervasive applications. In this section we

overview pervasive simulators and emulators to test environments, devices, and Wizard-of-Oz (WoZ) techniques to

enable debugging of applications when real sensor data is not available.

Emulation & Simulation

Emulators provide a virtual platform in which to demonstrate and debug an application. Both Activity Designer [38]

and Adobe Device Central [76] provide emulators to test applications on mobile phones. Activity Designer provides

a front view of the mobile phone where the user can interact with the buttons on the phone. Additionally, noise can

be added to generated sensor inputs to add more realism to the test. For professional mobile application development,

both Apple and Android provide full emulators of their mobile platforms. Similar to Adobe Device Central, the Apple

iOS and Android emulators provide fully interactive forward-views which are controlled by the user as if it were a real

phone. Additionally, users can simulate changes in locations and sensor values.

While emulation provides testing of a single interface or device, simulation allows for a richer experience that can

test features such as user interaction in a 3D space [59] [77], validation of context rules [78], and network performance

estimation [61] [79] [80]. Ubiwise [59], one of the first pervasive simulators, allows users to navigate a 3D world and

interact with virtual objects. This interaction assumes a device is mediating this interaction and allows the prototyping

of interfaces within the expected environment. Similarly, a hybrid prototyping approach has been used to combine

virtual environments with a physical miniature thereby removing the need for virtual avatars [77].

Using these approaches a pervasive application can undergo significant testing before being deployed. However,

there are several drawbacks to this approach. First, is the relative cost of creating emulators and simulators. Difficulty

arises when attempting to build applications where simulators or emulators are not present, and the user is potentially

faced with creating their own debugging platform. In this instance, less detailed testing techniques (such as Wizard-

of-Oz) are more appropriate. Second, the benefit of the emulator/simulator is directly tied to the quality and diversity

of information available. This is especially pertinent in simulations where the whole behavior of the prototype is being

tested and not only the interface.

Wizard-of-Oz

Wizard-of-Oz techniques fake abilities within an application where a critical element is not present. In this way, the

whole of the design can tested but without all the required pieces being present or functional. The means by which an

element is faked is dependent upon the application. Wizard-of-Oz testing is less intensive testing that full simulation

or emulation but is an appropriate testing technique early in design.

19

For GUI-based application it is common practice for Post-It notes to stand in for potential screens to test inter-

actions [1]. In location based applications, such as Topiary [39], the user can click an on-screen map to generate

position coordinates to the program. Similarly in Papier-Mache [40] the user can manually add and remove events

detected by a vision-based system. In iCAP [50] system variables are manually edited to create events. For tangible

interactions in dTools [36] program’s statechart is manually operated by clicking on the state to enter next. Finally,

DART [81] provides a WoZ interface for augmented reality applications where the operator can observe and manage

events detected by the system.

2.3.6 Integration with Current Practice

This section describes tools and methods that integrate existing design practices into creating pervasive applications.

Foam Prototypes

A common practice in industrial design is using foam core to prototype the form of ideas. The Calder Toolkit [62] and

IE5 [82] allow embedding of sensors within foam models. Calder contains wired and wireless components, such as

buttons, joysticks, and knobs, that are controlled by a computer running C/C++ or Java, where the interactive program

is written. IE5 allows the user to embed buttons on the foam that contain RFID tags. The user wears an RFID reader

in a glove, which powers the tags and can read back the buttons ID numbers when they are pressed, thereby creating

events for the system.

Sketching Interaction

Sketching is a fundamental activity for design and is a natural way to prototype interactive visual interfaces. Several

tools have been created that allow direct sketching of graphical interfaces. Sketch Wizard [83] and Sketchify [37]

enable sketching of graphical interfaces and help define transitions between those interfaces. STCtools [84] provides

a similar ability but has the added benefit of using real buttons and sensors that can attached to a workspace where the

interface is projected. Additionally, graphical interfaces can be annotated with d.note [85] which uses editors marks

to indicate changes to interfaces, their behavior, and to make comments.

Different from these approaches, but also utilizing sketching, is Ex-A-Sketch [64] which allow teams to rapidly

animate white board sketches. Sketches from a white board are captured using a camera which are imported and

segmented into different objects using Adobe PhotoshopTM . Once the elements of the sketch are segmented they are

projected back onto the white board and are manually animated using a control panel to prototype behaviors. For a

more complete review of computational sketching and design, see [86].

20

Arduino Family

Most of the tools we have discussed are research attempts within the computing community to attract designers and

novice users. However, there have been several home grown projects within the design world that incorporate com-

puting elements. Most notable of these efforts are Arduino and Processing.

Arduino is an open source hardware and software platform for embedded computing [35]. Arduino has become

a popular choice for creating interactive works because of its relatively low cost and its simplified programming

language. The Arduino language is C-like, but previously complex operations, such as reading from an analog-to-

digital converter, or communicating over a bus, have been simplified into single function calls. In this way Arduino

has lowered the barrier to entry for many who are unfamiliar with embedded computing. Additional versions of the

Arduino have been developed. The Lilypad Arduino [63] is a smaller form-factor Arduino that is designed to be sewn

into fabrics. While the Lilypad is still programmed using the Arduino language its form allows easier integration into

fashion design practices.

The Arduino approach of providing a simplified language was first used in Processing, a Java-like programming

language that facilitates easy creation of interactive visual programs [34]. Processing simplified the drawing and

movement of objects on screen in addition to providing access to keyboard and mouse events to make the program

interactive.

On closer inspection, Arduino and Processing still retain many elements of their parent languages. Controlling

an Arduino is still very similar to writing C, and creating a Processing program is still very similar to coding in Java.

The key is these tools have lowered barriers to entry on specific actions that were previously difficult. Opening a

window, and displaying and moving an object in Processing is a few lines of code, which when using traditional

methods would be more involved. Additionally, Arduino allows code to be written, compiled, and downloaded onto

the micro-processor within a single application; no programmers or additional tools are required. The success of these

approaches suggests that entirely new approaches to integrating design and computing may not be necessary, but only

that certain barriers be removed to provide easy access.

Field Observations & Storyboard

A unique representation is provided by Activity Designer [38] which allows activity models to be created from col-

lected field data. The tool provides a structured method for activity observations to be imported into the tool to create

various scenes which contain actions and situations. These scenes can be arranged in a storyboard metaphor to create

interactive prototypes that can be simulated or run on target hardware. This tool is motivated by Activity Theory and

Activity-Centered Design and maintains focus on the user and their activities throughout the design process.

21

2.4 Summary

As we discussed in Section 2.1, because pervasive computing experiences are closely coupled with computational

material, the design of these systems must be interdisciplinary including engineering, design, and domain-experts in

the fields where the system will be deployed. However, this close coupling presents challenges for teams due to these

new computational materials (Sec. 2.2.1) and due to differences in design processes (Sec. 2.2.2). Given the importance

of prototyping to the design process (Sec. 2.2.3) we examined the state of current pervasive computing design tools

(Sec. 2.3) and present the results of that analysis here.

Examining the surveyed tools they fall into two large categories: either general programming languages aimed

at novices, such as Scratch For Arduino [87] and ModKit [45], or custom tools targeted at a particular application

domain, such as dTools [36], aCAPpella [46], CAMP [48], or Activity Designer [38]. In an interdisciplinary setting,

either simplified programming tools, or domain specific ones are likely to fail. Members of the design team who are

non-programmers will be forced to learn a programming language to engage in prototyping. Specifically, they will

have a limited understanding of the “behaves like” aspects of prototyping [33]. While non-programmers do not require

the same level of technical understanding as engineering team members, they still require a certain level of abstraction

to understand why the prototype behaves the way it does. Having the proper level of abstraction about the operation

of the prototype allows team members to reason about why a behavior did not work and attempt to debug the process.

Additionally, they can be involved in the creative process instead of simply instructing the engineer about the desired

behaviors. Tools tailored for a particular domain may work well, but cannot be used in all situations. Considering that

pervasive computing applications span a wide domain from wearable computers to ambient spaces, it is undesirable

for design teams to switch tools when working on different projects.

Proposal: In response to deficiencies in existing tools we propose to explore how to create a new tool that will

enable interdisciplinary teams to collectively describe and implement the behavior of an interactive prototype. In

particular, we believe that storyboarding can be used to describe the behavior of pervasive computing applications, in

a medium that is accessible to all team members, and can contain sufficient formal properties to be used to implement

prototypes. We advocate selecting storyboards over other mediums for three main reasons. First, by using storyboards

in an interdisciplinary setting we are able to incorporate elements of sketching and drawing, which are fundamental

aspects of design [1, p.96]. Drawing and sketching about a problem is reflexive activity that helps incrementally

visualize and solve problems [13]. Second, storyboards are able to capture behavioral and temporal elements about

a design [6] [1, p.296]. Describing behavior for interactive products can be difficult for designers; however, they

often sketch and storyboard to resolve these issues [69, 88]. Finally, storyboards are accessible to members of an

interdisciplinary team and are a format in which they can collectively reason about behavior [7]. We explore an

implementation of electronic storyboards in the next chapter.

22

Chapter 3

Model-Driven Architecture for Pervasive

Computing System

In the previous chapters we examined the needs of interdisciplinary teams when designing pervasive computing sys-

tems. From our analysis we argued that design teams require a shared view of the design space to effectively create

pervasive systems and selected storyboards as our design front-end for developing such a tool. In this section we

address Research Question 2 by outlining a model-driven approach to develop a new electronic storyboarding tool

that implements the requirements described in previous sections. Electronic storyboards represent a domain-specific

modeling language (DSML) for pervasive computing systems. Unique to our approach is the role of ambiguity in

creating the pervasive system model. Users of electronic storyboards are not overly constrained when storyboarding

their systems and are allowed to create designs that may not be “valid” when being transformed. This approach differs

from traditional DSML development techniques which promotes rigor and formal meaning to ensure efficient model

transformations. Our approach allows design teams to “make mistakes” which are interactively “corrected” during the

model transformation.

In the remainder of this Chapter we outline related work in Section 3.1. In Section 3.2 describe our approach to

implementing electronic storyboards and the challenges faced. In Section 3.3 we provide details of our solution and

its operation on a sample storyboard. We summarize this work in Section 3.41.

1Portions of this chapter are based upon the author’s work in [89] and are reproduced here under copyright permitted by the Association for
Computing Machinery (ACM).

23

Figure 3.1: Elements of a domain-specific modeling language.

3.1 Related Work

In developing electronic storyboards we will adopt a model-driven engineering (MDE) approach to software devel-

opment. MDE presumes that developing software is primarily a task of modeling some system in an appropriate

language. This model is then transformed into other models through model-to-model transformations or into text and

other artifacts through model-to-text or text-to-model transformations. The driving principles of MDE are to ensure

properties of the system hold through these transformations and can be formally treated. Models of a system must

conform to a meta-model that defines the set of allowable objects and relationships within that model [90].

Within Model-Driven Engineering, electronic storyboards can be viewed a domain-specific modeling language

(DSML). DSMLs are different from general purpose languages as they are designed for applications within a single

domain [91]. These targeted languages allow direct implementation of a model for that domain and enable automatic

generation of other models or artifacts [92]. The argued benefits of DSMLs include easier maintenance of software,

reusability, increased productivity, and better documentation [93, 94].

DSMLs come in two flavors: graphical or textual. Textual DSML are written languages widely recognized in

computer science with common examples being Verilog, VHDL, and HTML [90]. More targeted textual languages

are available that describe cyber-physical systems [95] and embedded systems [96]. Distinct from textual DSML are

Visual DSMLs that use charts, graphs, and diagrams to express domain concepts [97]. As electronic storyboards are a

Visual DSML we will focus the remainder of this section on their construction and application with MDE.

Visual DSMLs are defined by three elements: a concrete syntax, an abstract syntax, and grammar [90]. The

influences of these elements are shown in Figure 3.1. The abstract syntax expresses the fundamental concepts in a

24

domain and is generally implemented as a meta-model. The concrete syntax is the particular graphics and imagery

that provide visual representation of the abstract syntax. Concrete syntax should be informed by the particular domain

in which one is targeting so it is understandable to the domain end-user [98]. A grammar can be defined that expresses

the valid “sentences” or models allowed by the abstract syntax and meta model. Within electronic storyboards, our

abstract syntax is defined by the Electronic Storyboard Meta-Model in Figure 3.7. Our graphical syntax is the frames,

images, and labels implemented within Eclipse GEF in Figure 3.9. The grammar that governs a model is generally

expressed through the Object Constraint Language [99]. The issue of model validation, that is ensuring the model

expressed by the DSML conforms to the meta-model, will be discussed in more detail later. The grammar governing

electronic storyboard languages is more loose to allow ambiguity and foster discussion. This design choice does inhibit

easy model transformation but we believe the benefits of fostering design discussion outweigh the challenges in the

model transformation.

Developing DSMLs is recognized as a difficult task. Defining the abstract and concrete syntax requires collabora-

tion between modeling and domain experts to ensure the two syntaxes are properly aligned and useful for the domain

application. Research has examined accessible tools for defining DSMLs [100, 101, 102], enabling definition through

demonstration [103], and approaches to focus primarily on the visual aspects of the language and automatically gen-

erate the abstract syntax [104, 105]. Sadly, the Eclipse Graphical Editor Framework used to implement electronic

storyboards is not among the new accessible tools. At the time of starting the project, these new tools were not

available or did not provide sufficient expressive power for our application.

A major initiative of model-driven engineering is to create artifacts that are “correct-by-construction” such that

properties of models can be preserved through various transforms and modifications [106]. The benefit of “correct-

by-construction” is most evident when developing source code or implementations of systems where properties like

safety, reliability, and liveness must be retained. This focus expresses itself within DSML through the grammar rules

or model-checking to ensure that a model expressed by the DSML is valid. If a model is invalid it is seen as an error

and must be rectified by the user. Our approach in Electronic Storyboards is different. We intentionally allow teams to

express an electronic storyboard that is ambiguous and difficult to perform the model transformation. Our assertion is

the ambiguity in storyboards facilitates design discussion and concrete definition is not needed during the early design

phases. However, as we will discuss in Section 3.3.4, we do desire the MDE properties to generate the state charts

and source code from the electronic storyboard. Our shows there is a place for DSMLs during the early design stages

and ambiguity can be valued instead of eliminated. The role of ambiguity to implement designs has received some

recognition. The Epsilon Validation Language provides the ability for user queries during validation and can express

different levels of “invalid” models through warning, critique, and error [107]. Additionally, work on uncertainty

preserving model transformations [108, 18] has recognized that domain modeling is an iterative practice that utilizes

refinement to remove uncertainty over time.

25

Figure 3.2: Electronic storyboards as a model-driven engineering process.

Figure 3.3: Elements of a storyboard.

In the next section we outline our approach to implementing electronic storyboard. We present our assumptions,

the challenges inherent in using storyboards, and the models that drive our implementation.

3.2 Adopting a Model-Driven Approach

In this section we describe our model-driven approach to developing electronic storyboards. We this method for

convenience and support as our primary function will be transforming storyboard information into a model of the

underlying computing system. From that underlying model we will examine the set of artifacts that can be generated

and how they may be useful to interdisciplinary design teams. Figure 3.2 outlines our approach. First, we develop

a domain-specific modeling language (DSML) based on storyboarding that is accessible to both engineering and

design practitioners. From that DSML, a model of a pervasive computing systems will be extracted based upon

timed automata. Finally, the timed automata is transformed into design artifacts that are of interest to design teams.

This section describes our assumptions in developing the electronic storyboarding DSML, challenges in creating that

language, and the resulting meta-models that describe the pervasive system.

26

3.2.1 Definitions and Assumptions and Approach

An electronic storyboard is a software design tool that allows an interdisciplinary team to electronically draw and

depict how a user, or group of users, interacts with some pervasive computing system. A storyboard typically contains

a set of frames, with each frame containing textual and visual annotations as shown in Figure 3.3. Visual annotations

encompass all the drawn elements of the storyboard, while textual annotations are the words and phrases placed in and

around the frame.

A simplifying assumption made in this work is that the storyboard is drawn electronically using some computer

application. By using an electronic medium, the drawings and markings on the storyboard can be recognized as

independent objects, such as words and images, and not as a collection of individual strokes. This assumption removes

the need for sketch recognition in the storyboard, and makes the challenge one of sensemaking and deriving high-level

meaning. In the next section we outline some of the challenges faced by our approach.

3.2.2 Challenges Using Storyboards

Software Specificity vs Storyboard Ambiguity

When using storyboards to describe pervasive computing systems, one of the most significant tradeoffs is between the

current practice of storyboarding and the need to accurately capture the semantics of the pervasive computing system.

Storyboards are often ambiguous and leave details to the reader. In practice this can be useful as ambiguity serves as

a focal point for discussion between team members and moves the design process forward [1, p.117]. However, when

describing pervasive computing systems, this ambiguity is a barrier to correct implementation of the intended system

behavior. Prototypes of these systems often require assembling hardware and software components, where ambiguity

in the implementation may create incorrect or undefined behaviors.

Our approach strikes a balance between the needs of the design team and the requirements of correct implemen-

tation through a combination of keyword “tags” applied to visual elements of the storyboard, and natural language

processing of text throughout the storyboard. When creating a storyboard, the design team can “tag” visual elements

within the storyboard to indicate that image contains important information. Our example tags are shown in Table 3.1

and allow the design team to indicate semantic information about a prototype’s behavior using State, Event, and Action

tags, or indicate important contextual information using Person, Location, Temporal, and Context tags. This tagged

information is supported by natural language processing (NLP) [109] of text within the storyboard. Any words, text,

or labels contained within the storyboard are parsed using NLP to identify additional information regarding events,

locations, or time. These NLP results supplement the information from the tags and allow the design team to incom-

pletely describe a prototype, either intentionally or not, and thus enable the storyboard to retain some ambiguity. Given

the inaccuracy of the natural language tools, their results are considered less authoritative than elements tagged by the

27

Keyword Description Example
Person name of a person Jimmy, Mom, Dad
Context name of a context Meeting, Outside
Location physical location At Home
Temporal time interval Later, Meanwhile

Event triggering event Push a button
Action prototype’s response Display a Message
State prototype state name Idle, Waiting, Alert

Table 3.1: Supported tags for storyboard objects

(a) Linear Layout (b) Branching Layout (c) Looping Layout

Figure 3.4: Frame layouts to express different conditional behavior. The numbers in each frame indicate the order in
which they would be “read” by the storyboarding tool. (a) shows linear storyboard frames that are read left to right. (b)
allows for conditional behavior to branch away from the linear layout. (c) uses arrows to loop back on the storyboard.

design team. We resolve this issue by querying the user before any NLP information is accepted when creating the

behavioral model.

Complexity of Behavior within a Storyboard

When using an electronic storyboard, the design team depicts the intended behavior of their prototype using frames,

images, and text. Depending on the complexity of the intended behaviors, the storyboard can be rather large. Sim-

ple storyboards describe simple prototypes, but as the number of behaviors increases for the prototype, so does the

complexity of the storyboard. While storyboards do not necessarily enable concise descriptions of a prototype we

anticipate they do enable the description to be understood across disciplinary boundaries.

The complexity of the prototype is most readily apparent in the layout of the storyboard. Typical storyboards have

a linear flow, meaning they are read left to right and top to bottom. When used to describe interactive behavior, the

layout lends itself to expressing behaviors in a linear and causal order. An example of this linear layout in shown

in Figure 3.4a. However, when developing interactive systems, there are often conditional or iterative behaviors that

must be expressed. For example, a device should make a choice between two inputs, or should continue a behavior

until some condition is met. Studying storyboarding more generally, Buxton commented that the complexity of the

layout is directly related to the “learnability” of the underlying system [110].

Keeping the linear structure of a storyboard would make expressing these situations more difficult. To address

this problem we have added arrows to connect frames with conditional events as shown in Figure 3.4b. In this way,

the linear structure can be extended to exhibit branching behavior. These arrows can also be used to express looping

28

Figure 3.5: Mapping from storyboard objects onto a timed automaton

behavior where the storyboard returns back on itself as in Figure 3.4c. By augmenting the traditional structure of

storyboarding we can allow design teams to express additional “computational” behaviors without sacrificing existing

practice.

Mapping Storyboard and Model Semantics

Earlier in this section we discussed how information in storyboards can be expressed through keyword tags, natural

language processing, and the layout of the storyboard. To enable these information sources to generate a behavioral

model, their information must be mapped to a suitable model of computation. A “good” model of computation must

have several properties: (1) support easy transformation of storyboard information to model information, (2) capture

key prototype behaviors such as action, response, time, and context, and (3) support generation of design artifacts such

as source code, diagrams, and other descriptions that help evaluate and implement a prototype. For our approach, we

selected timed automata to represent the prototype’s behavior within the storyboard. A timed automaton describes

a system as a series of states, with each state having trigger conditions and responsive actions between states [111].

These models can be considered an extension of finite state machines as they allow transitions based upon time.

Timed automata are flexible and can be used to describe moderately complex systems [112]. Additionally, several

of the keywords in Table 3.1 map directly to timed automaton concepts as shown in Figure 3.5. The keywords State,

Event, and Action directly map to timed automaton states and transitions, whereas contextual information can be

represented as a superstate that enables the timed automaton. Furthermore, timed automata can capture temporal

phenomenon contained in storyboards. While frames are typically rendered in a linear order, their content can be

highly variable with regard to temporal information. Timed automata are advantageous because transitions between

states occur based upon an independent clock that is external of user input. In situations when there are temporal

relationships between automata, for example some behavior must occur before another, we have adopted an interval

algebra [113] that is used to specify how those automata should be ordered and executed. Finally, timed automata can

29

Figure 3.6: Meta-model of a pervasive computing system.

be used to automatically generate code [114, 115] that can facilitate implementing the prototype once the model has

been formed.

3.2.3 Meta-Models of Pervasive Systems, Electronic Storyboards, and Timed Automata

Having outlined some of the challenges in this project, we now present more formal meta-models for pervasive com-

puting systems, electronic storyboards, and timed automata. These meta-models define the fundamental concepts and

relationships for each domain. We describe the meta-model in turn and outline our rationale for their construction.

Pervasive Computing System

Figure 3.6 presents our meta-model of pervasive computing systems. We define pervasive computing systems to be a

collection of individual devices where the functionality of a device is defined by a set of behaviors. These behaviors

encapsulate high-level interactions such as “responding to a message” or “reminding the user of an event”. Depending

on the device in question it may have many behaviors that define its overall functionality. Each behavior does not

operate in isolation but can have relationships with other behaviors based upon the context they operate under and

any temporal dependencies between behaviors. Some behaviors might always be operational (e.g. receive a message),

while others only at certain locations (e.g. silence phone while at the movies), or after other behaviors have occurred

(e.g. upload my step count after running). We formalize these notions by defining two relationships between contexts -

equivalent, not equivalent - and three temporal relationships between behaviors - before, after, and independent. As we

will discuss in Section 3.3, the current context determines which behaviors are active. For behaviors with equivalent

context they may all be active depending on their temporal relationship. Behaviors that are independent execute

30

Figure 3.7: Electronic Storyboard Meta-Model

concurrently. If Behavior A is before Behavior B, A must complete before A can execute. The reverse condition holds

for the after relationship.

Electronic Storyboard Meta-Model

An Electronic Storyboard contains a number of frames with each frame containing visual and textual annotations.

Each annotation can have a particular source of information: a user-applied annotation, results from natural language

processing using semantic role labeling (SRL) [116] or named entity recognition (NER), connector information as-

signed by the user, or direct text. We will examine how these information sources are used in later sections to facilitate

model to model transformations.

Timed Automata Meta-Model

A timed automata is defined formally as G = {X,E, f,Γ, x0,V} where X is a countable state space, E is a countable

event set, f is a state transition function f : X × E → X , Γ is an active event function Γ : X → 2E, x0 is the

initial state, and V is a clock structure that governs which active events are taken [111]. The meta-model, shown in

Figure 3.8, captures these properties by defining states and transitions with triggering events and responsive actions. As

we described in Section 3.2.2, timed automata are a suitable choice to represent the computational behaviors expressed

in electronic storyboards. The tagged states, events, actions and natural language parsing within the storyboard help

31

Figure 3.8: Timed Automaton Meta-Model

define the states (X) and events (E) of the automaton. As we will see in Section 3.3.1, the layout of the storyboard

helps define the state transition function f that we extend with the actions identified through tagging.

3.2.4 Instantiating Electronic Storyboards in Eclipse GEF

An implementation of electronic storyboards has been created in Eclipse Graphical Editor Framework (GEF) that

allows users to draw a storyboard using frames, images, and text [14]. GEF serves as a tool to implement our domain-

specific modeling language. Images placed on the storyboard canvas can then be “tagged” using the set of keywords

in Table 3.1 where each tag reflects a specific type of information. In addition to images, users can also place labels

that contain arbitrary text, and frames to contain both the images and text and provide a structure to the storyboard.

The design team can then “compile” the storyboard from within Eclipse and interact with the tool using the console.

Visual annotations and labels can be placed on the storyboard canvas by dragging and dropping elements from

the palette shown on the right-hand side of Figure 3.9. These elements can be easily resized and moved in and out of

frames. Specific information about each annotation, such as a Person’s name or a particular Location can be modified

in the Properties View below the canvas. In Figure 3.9, the Properties View shows the model information for a State

tagged image, and allows the user to give the state a name, resize the image, and identify what device it belongs to.

The attributes for each image change depending upon the keyword tag applied. For example, an image tagged as a

Person could be given the attribute “John”, or a tagged State as “Idle” or “Running”. The attributes given to Context

and Location objects have more significance as they help partition the storyboard into different sets of behavior. In

addition to existing storyboard objects (frames, text, and images), we have added arrows that connect frames across the

storyboard. These are used to indicate conditional behaviors in the storyboard that may not be directly indicated from

the layout. A history of the design choices involved in developing Electronic Storyboards is outlined in Appendix B.

32

Figure 3.9: Screenshot of electronic storyboarding tool in Eclipse showing an example storyboard, palette, and prop-
erties view. Arrows indicate the type of tagged object and its value.

3.3 Model Transform from Electronic Storyboards to Timed Automata

Having defined the models in our tool we now outline the transformations required to move from electronic storyboards

to timed automata. Storyboard compilation operates in three phases: Layout Analysis, Global Partition, and Local

Synthesis as illustrated in Figure 3.10. Layout analysis transforms the structure of the storyboard into a graph that can

be parsed by future transformations. Figure 3.10b provides a graphical illustration of this process. Layout analysis

also ensures that connectors and device names are properly defined. Global partitioning takes the graph generated

from Layout Analysis and partitions it into regions of different time and context as in Figure 3.10c. The assumption is

that indications of time or context are different behaviors exhibited by the storyboarded device and will be complied

separately. Finally, local synthesis converts each behavior into a timed automaton in Figure 3.10d.

In this section, these transformations are presented at a high-level to maintain readability. Full descriptions of their

implementation are presented in Appendix A.

33

(a) An electronic storyboard showing looping and
communication between two devices. (b) Layout analysis (c) Global partition (d) Local synthesis

Figure 3.10: Example tool compilation process taking into account multiple behaviors and devices.

(a) (b)

Figure 3.11: (a) Sample layout showing local, conditional, and message connections. (b) Frames grouped by geometric
proximity.

3.3.1 Layout Analysis

The first step of compilation is to extract layout information from the storyboard. Figure 3.11a shows a sample

storyboard with three groups of frames. The solid connector indicates a conditional branch between the groups, while

the dashed connector shows that a message is being passed between two devices in that group. The first pass in layout

analysis groups frames by geometric distance. Figure A.2b identified three frame groups that were found.

After identifying frame group each frame is enumerated and the group is “read” left to right and converted into

graphs as shown in Figure 3.12a. Each node in the graph is a particular frame and each node is connected by an arc that

identified what layout relationship the frames have to each other. Frames can be connected by “implied” connections

through physical geometry or explicit conditional and message connectors available through the user interface. The

final stage in layout analysis is the only stage where the layout is constrained. The State annotations in each group of

frames is examined to determine if multiple devices are references. Conditional connectors may only connect groups

that reference the same device, and message connectors may only be used to reference groups with different devices. In

34

(a) (b)

Figure 3.12: (a) Resulting graph from Layout Analysis. (b) Cutting message connectors. Inserting events (e) and
actions (a) into the form connecting frames.

(a) (b)

Figure 3.13: Global partitioning of a storyboard graph. State, Event, Action, and Context annotations are indicated
with S, E, A, C respectively. NER indicates natural language information from Named Entity Recognition.

Figure 3.12b the graph is partitioned based up the difference devices it references. The message connector is removed

and replaced with a sending action in the originating frames and a receiving event in the destination frame.

3.3.2 Global Partition

Once Layout Analysis has completed, the graph for each device is examined for Context and Time information.

Recall from Section 3.2.2, context and time information can be found from Context, Temporal, or Location tags, or

from location results from natural language processing. Global partitioning operates on this context information to

partition the graph into sub-graphs of different time and context. Following every path down the graph a partition is

created when a new context is identified. After partitioning if multiple contexts are available attempts will be made to

re-merge equivalent contexts into a single graph. Otherwise each graph will be treated as an individual behavior of the

device.

35

(a) Multiple Action annotations. (b) Complete transition.

Figure 3.14: Local Synthesis parsing two branches.

As an example of this process, the graph in Figure 3.13a contains five nodes with varying types of information.

User-applied State, Event, Action and Context annotations are indicated with S, E, A, and C, respectively while natural

language information from Named Entity Recognition is indicated with NER. In this example ’C’ contains the context

“At Home” while the location “At Work” is inferred from NER. During global partitioning the user will be queried to

determine whether “At Home” and “At Work” are different contexts. Assuming the user indicates they are different,

the graph will be partitioned into different sub-graphs as shown in Figure 3.13b.

Currently, the tool can identify that some information is related to context or time, but it cannot distinguish between

different contextual information. For example, two contexts “at home” and “at work” that are tagged by the design

team are easily recognized, but the tool itself has no means to distinguish these contexts and requires the design team

to differentiate between the two. A semantic understanding of these contexts could be accomplished through tools

that enable novice users to define contexts of interest [46], or existing architectures to recognize and disseminate

context [117]. However, an implementation of these approaches is beyond the scope of this work. Regarding temporal

information, our approach does determine relationships between time intervals by using interval algebra [113] to

provide a formal definition of temporal ordering.

3.3.3 Local Synthesis

After the storyboard has been partitioned into sets of similar time and context, each set is analyzed to build a timed

automaton. The graph is searched for user-applied State, Event, and Action annotations which correspond to states of

the automaton, the triggering events between states, and the actions taken by the system. With two states, it is known

that a transition has occurred, but the triggers and responses may be unknown. In the absence of tagged objects, the

textual annotations within the storyboard are queried based upon SRL and NER parsing results. If NLP information

36

Figure 3.15: Parsing final branch of local synthesis with missing Event annotation.

sw i t ch (c u r r e n t S t a t e)
{

[f o r (s t a t e : S t a t e | t a . s t a t e s)]
case [s t a t e . s t a t eName /] :
[f o r (t : T r a n s i t i o n | t a . t r a n s i t i o n s −>s e l e c t (t r a n : T r a n s i t i o n | t r a n . s o u r c e S t a t e = s t a t e))]
i f ([(t . t r i g g e r . name) /] () == t r u e) {

[(t . r e s p o n s e . name) /] () ;
n e x t S t a t e =[t . d e s t i n a t i o n S t a t e . s t a t eName /] ; }

[/ f o r]
break ;
[/ f o r]

}

Listing 3.1: Implementing Arduino state machine logic in Acceleo. Each state in the timed automata is implemented
as a series of case statement and inbound and outbound transitions are automatically implemented.

is not available, or the user does not select any NLP results, the user will be asked to manually specify the missing

information. Additionally, if multiple tagged events and actions or available, the user will be asked to specify which

events and actions cause the transition.

As shown in Figures 3.14 and 3.15, a State Builder follows the graph collecting these annotations. The State

Builder stops when when two State annotations are found and attempts to build a transition. In Figure 3.14a the

Builder reaches the end of the graph with two State, one Event, and two Action annotations. To help resolve the

multiple Action annotations the user will be queried to determine which Action is caused by the lone Event. In

Figure 3.14b the Builder has continued down a branch to build another transition. In Figure 3.15 the final transition is

found but with a missing Event annotation. With no natural language information within this branch, the user will be

queried to describe the missing Event.

3.3.4 Resolving Behaviors and Generating Design Artifacts

The previous section One the main benefits of adopting timed automata was they could be synthesized into various

artifacts that might be useful for a design team. In this section we outline how timed automata can generate source

code, state charts, and textual descriptions. These artifacts will be used during the user study described in Chapter 4.

37

s t a t i c i n t p T h r e a d s i l e n c e (s t r u c t p t ∗ t h r e a d) {
enum S t a t e {MovieId le , S i l e n c e d } ;
s t a t i c S t a t e c u r r e n t S t a t e = Movie Id l e ;
s t a t i c S t a t e n e x t S t a t e ;
PT BEGIN (t h r e a d) ; / / Begin t h r e a d body
whi le (1) {

i f (At theMovies () == t r u e) { / / i s c o n t e x t a c t i v e ?
sw i t ch (c u r r e n t S t a t e)
{
case Movie Id l e :

i f (Rece iveMessage () == t r u e)
{

S i l e n c e M e s s a g e () ;
n e x t S t a t e = S i l e n c e d ;

}
break ;

case S i l e n c e d :
break ;

}
}
c u r r e n t S t a t e = n e x t S t a t e ;
PT YIELD (t h r e a d) ; / / y i e l d t o o t h e r s

}
PT END (t h r e a d) ;} / / End t h r e a d body

Listing 3.2: Automatically generated context-enabled behavior implemented as protothread.

Resolving Device Behaviors

After partitioning and synthesis, the behaviors extracted from the electronic storyboard are implemented as a timed

automaton as shown in Figure 3.10d. Before these behaviors/automata can be generated into source code, the contex-

tual and temporal relationships between the behaviors must be resolved. As discussed in Section 3.2, each behavior

can have contextual and temporal relationships with one other. Contextual relationships are defined as equivalent or

not equivalent. Determining whether two contexts are equivalent can be difficult as their relationship may change

based upon the application. For example, in the case of a watch that automatically silences calls during personal

situations, being “in a meeting” or “dinner with friends” are different situations but are the same context for this ap-

plication. Given these difficulties the tool asks the user to manually resolve these relationships through a text console.

The current approach supports three temporal relationships: before, after, and independent. Before and after are re-

flexive relationships that indicates one behavior must complete for the other one to execute. Behaviors may also be

independent where they can execute without regard for one another.

Generating Design Artifacts

Source Code: After resolving relationships between behaviors each device in the storyboard can be implemented in

the Arduino language. Using the Acceleo model-to-text language [118], the state transition logical and function calls

for each automata can be automatically implemented using Listing 3.1. The program reads in a timed automata model

and generates the required transition logic and functional stubs in Arduino. Any text within brackets is part of the

38

void coffeeMessageRX () {
OSCMessage msg (” /COFFEESTARTMESSAGE”) ;

/ / u se msg . add () t o add cus tom pay load da ta

Udp . b e g i n P a c k e t (o u t I p , o u t P o r t) ;
msg . send (Udp) ; / / send t h e b y t e s t o t h e s t r e am
Udp . e n d P a c k e t () ; / / mark t h e end o f t h e OSC P ac ke t
msg . empty () ; / / f r e e space o c c u p i e d by message
re turn ;}

Listing 3.3: Sending OSC message from Alarm Clock to Coffee Maker.

b o o l e a n c o f f e e S t a r t M e s s a g e () {
i f (cof feeS ta r tMessageMSG ==NULL)

re turn f a l s e ;
/ / message has been r e c e i v e d
e l s e {

/ / do s o m e t h i n g (i f any) w i t h message c o n t e n t s

cof feeStar tMessageMSG−>empty () ;
cof feeSta r tMessageMSG =NULL;

re turn t r u e ;}}

Listing 3.4: Generated message receiver on Coffee Maker.

Acceleo language and other text is directly printed out. This enables easy code generation using the timed automata

derived from compilation. For a device where more than one behavior is present each behavior is implemented as

a protothread to enable concurrency [119]. Protothreads are light-weight threads implemented as co-routines in C.

Utilizing protothreads and Acceleo the state transition logic of a timed automata can be automatically generated as in

Listing 3.2. The code in Listing 3.2 partially implements a behavior of a smart watch that silences inbound messages

if the wearer is at the movies. While Acceleo can implement the timed automata’s transition logic it cannot directly

implement individual functions, such as checking for a message or where the user is located. Overall this reduces the

amount of code required to implement the device but does not eliminate writing code entirely.

As an additional benefit for pervasive systems where multiple devices are communicating, Acceleo can be used to

automatically generate message passing structures. Open Sound Control (OSC) [120] is used to encapsulate messages

and use the UDP library in Arduino to send packets over Ethernet or Wifi. Each message connector in the storyboard

must provide a name for the information that it is transmitting. This name is used as the address pattern in the OSC

message to uniquely identify the message between sender and receiver. Listing 3.3 and 3.4 are derived from an example

where an alarm clock checks whether the user is awake and asks whether they would like coffee. Depending on the

user’s response a message is sent to the coffee maker. Listing 3.3 automatically implements the code required to send

a message between the two devices and allows the user to add custom data to the payload. Program 3.4 receives the

message and routes the message object to the corresponding function where the payload is unpacked.

39

Figure 3.16: State chart generated from storyboard

State Charts and Textual Descriptions: While source code is helpful in implementing the prototype, it may not be

an accessible representation for all users of electronic storyboards. Fortunately, the timed automaton formalism can

be expressed in several ways. We use the PlantUML [121] library to create graphical statecharts as in Figure 3.16.

Additional textual descriptions can be generated that express the state chart in words rather than visually. In the user

study in Chapter 4 we will examine the utility of these representations.

3.3.5 ICON: Storyboard

This section showcases an example of how to use electronic storyboards to synthesize a timed automaton. We have

developed a Java-based proof-of-concept tool in Eclipse GEF that implements the information extraction process

described in the previous section. The tool reads an electronic storyboard and interacts with the user to resolve

ambiguous or missing information in the storyboard. The example storyboard, as shown in Figure 3.9, is taken from

an interdisciplinary product design course [3] and has been re-created by the authors with keywords to describe the

prototype’s behavior and provide a proof-of-concept for our approach. No other changes have been made to the

original storyboard.

While this section only examines a single example storyboard, the example has been intentionally chosen as it

highlights many common difficulties encountered when synthesizing electronic storyboards. Based upon our experi-

ences working with college-level product design teams and recent work with middle school students, most storyboards

will be incompletely tagged and fall under the same class of storyboard as our example here. It is important in this

example that the tags applied to the storyboard do not fully specify the prototype. As we will see, there are missing

40

Frame Tags Semantic Role Labeling Named Entity
1 Person:Jimmy, Con-

text:Outside, State:Idle
A0: Jimmy V: playing LOC:in the neighborhood Jimmy:Per

2 Action:Alert —– —–
3 State:WatchAlert A0: He V: received A1: a message —–
4 State:WatchAlert A0: He V: presses A1: the top of his Icon —–
5 State:WatchMessage A0: Jimmy V: check A1: his blood glucose levels Jimmy:Per

Table 3.2: Information extraction from an example storyboard (V=verb, A0=direct object, A1=indirect object,
LOC=location, TMP=temporal, PER=person)

“event” tags in the first three frames, and no tags for “event” or “action” in the later frames. This forces our tool to

rely on natural language processing and to query the user for missing information. As this dissertation is a study of

the feasibility of using electronic storyboards, and this example is representative of many common storyboards, our

methodology must show that it can address these types of storyboards to be a viable design tool.

The example storyboard in Figure 3.9 shows a child interacting with a smart watch. The storyboard illustrates how

a father and son can communicate to keep up to date on the son’s blood glucose levels. The parts of the storyboard

shown illustrate the response of the watch when it receives a message and how the son can push a button to display

and read the message.

In Figure 3.9, tagged elements of the storyboard are indicated by arrows pointing to different visual annotations.

In the first frame there are three tagged elements. The image of the child is tagged as a Person and given the name

Jimmy. The picture of the watch is tagged as a State of a device and assigned the name Idle. Finally, the first image

with the sun is tagged as a Context and assigned the name Outside. Once these elements are tagged, their information

persists across the storyboard. Thus in the second frame, the watch is known to be in an Idle state without having to

re-tag the visual annotation. In addition to tagged storyboard elements, the results of the NLP parsing are shown in

Table 3.2. For the SRL and NER results, V indicates a verb, A0 a direct object of the verb, A1 an indirect object of

the verb, TMP a temporal modifier, and LOC a location.

As described in the previous section, the storyboard is automatically converted into a timed automaton in two

phases. First, the storyboard is partitioned into sets of frames that occur under the same context and during the

same time interval. After the frames have been partitioned, each set of frames is parsed to isolate behavior about the

prototype. Each frame is searched for states of the prototype, events that it responds to, or actions that the prototype

performs. For our example storyboard, the timed automaton in Figure 3.17 is generated by the process. We illustrate

how that automaton is created in the remainder of this section.

41

Figure 3.17: Timed automaton derived from example storyboard. Information sources are indicated with dashed
arrows.

Partitioning Based Upon Time and Context

Beginning with the first frame, the storyboarding tool searches for context and time information. Initially the tool does

not have any understanding of time or context, but adopts the first meaning that it finds. From that point forward, new

time intervals or contexts are compared with the current to see if they are similar. Using the information in Table 3.2,

the tool searches for frames that provide information regarding time or context. Time information is found from any

tagged Time keywords, or any NLP result with the TMP tag. Similarly, context information is found from any Context,

Location, or Person tags or any NLP result with the LOC tag (indicating location).

The Context “Outside” is created as the initial context, as it is found from tags in Frame 1. However, within the

same frame, a location “in the neighborhood” is found from the NER results. Presently, our method cannot determine

the difference between contexts based solely upon name, so the user is queried via the console to determine if they

are different. For this storyboard containing the contexts “outside” and “in the neighborhood” the user would respond

that they are equivalent contexts so the tool continues through the storyboard. As no new contexts are encountered

through the remainder of the storyboard, all the behaviors within the storyboard are assumed to occur under the context

“outside”. This is represented by the superstate in Figure 3.17 that contains the whole automaton.

Building Local Behavior

After partitioning the storyboard, the tool scans each frame for State, Event, or Action information until one of two

stop conditions is reached: two states have been found, or an event and action have been found. Each condition

indicates that a change in behavior has occurred. With two states, it is known a transition has occurred but the triggers

and responses may be unknown. With an event and action the transition is described, but its originating and next states

are unknown.

42

Returning to the example storyboard in Figure 3.9, the tool reads Frames 1 to 3 and encounters two states and

an action. Frame 1 shows the smart watch in the Idle state, Frame 2 shows the Action alert, and Frame 3 provides

a new state called WatchAlert. Currently, two states are known (Idle and WatchAlert) along with the Action “Alert”,

which is the watch’s response to the state change, but the trigger of the state change is unknown. With no tagged

information to guide it, the tool asks the user for the triggering event. Since the action “Alert” is known the tools

asks “Does the following statement cause the action Alert?” This question is posed for each SRL result in Table 3.2

and the user is asked to respond ’yes’ or ’no’. For the example storyboard, the user is asked whether “playing in the

neighborhood” or “received a message” caused the Action Alert. The user would respond that “receive a message” is

the correct trigger. Using this process, the tool has found that the watch moves from State Idle to State WatchAlert

when “received a message” occurs and should respond with an Action called Alert. This information is represented

in the timed automaton in Figure 3.17 as a transition between the two states Idle and WatchAlert. After creating this

behavior, the tool continues parsing the storyboard.

Beginning in Frame 4 the tool encounters State WatchAlert and then State WatchMessage in Frame 5. In contrast to

the earlier frames, there are no tagged events or actions to indicate what causes the transition between these states. The

tool attempts to resolve this issue by asking “Does the following event cause the system to transition from WatchAlert

to WatchMessage?” using the SRL results in Table 3.2. Thus, the user would be asked whether “presses the top of his

Icon” or “check his blood glucose levels” is the triggering event of the transition. Here the user responds that “presses

the top of his Icon” causes the state transition. However, the transition cannot be completed as a responsive action

is still missing. The behavior implied by the storyboard is that the message should be displayed after the button is

pressed. In this situation the tool would continue to ask the user if the remaining SRL result, “check his blood glucose

levels”, is the responsive action. As this is not the expected behavior the user would decline these result. Having

exhausted all information resources, the tool will ask the user to manually specify the action. The user could then

manually type a response such as “display the message” on the console. This final behavior can now be added to the

timed automaton in Figure 3.17 as a transition between WatchAlert and WatchMessage, caused by pressing the button,

and the user supplied response.

After reading Frame 5 the parsing of the storyboard is finished. The automaton in Figure 3.17 represents the be-

havioral model produced by this process. Additionally, source code can be generated from the automaton. Listing 3.5

shows a portion of generated code that shows the transition logic for the automaton using the Arduino programming

language [122]. The code initially checks to if “outside” is the current context and then executes the logic defined by

the automaton.

43

S t a t e c u r r e n t S t a t e =INITIALSTATE ;
S t a t e n e x t S t a t e ;
void l oop (){

i f (i s O u t s i d e ()== t r u e){
c u r r e n t S t a t e = I d l e ;

sw i t ch (c u r r e n t S t a t e){
case I d l e :

i f (r ece ivedAMessage ()== t r u e){
a l e r t () ;
n e x t S t a t e = WatchAle r t ;

}
break ;

case WatchAle r t :
i f (p r e s s e s T h e T o p O f H i s I c o n ()== t r u e){

d i sp l ay Th eMe ss age () ;
n e x t S t a t e =WatchMessage ;

}
break ;

case WatchMessage :
break ;

}
}
c u r r e n t S t a t e = n e x t S t a t e ;

}

Listing 3.5: Arduino code created from the timed automaton in Figure 3.17

3.4 Summary

In this chapter we have outlined a model-driven approach to the development of electronic storyboards. The work in

this chapter addresses RQ #2 by showing how tagging, natural language processing, and layout analysis can be used to

generate timed automata of storyboarded systems. The proposed solution is not the only possible approach but reflects

the challenges identified in Section 3.2.2. In the remainder of this dissertation we propose models to evaluate our tool

in Chapter 4 and report on the tool’s efficacy in Chapter 5.

44

Chapter 4

Evaluating Electronic Storyboards As

Boundary Objects

4.1 Introduction

Examining the efficacy of electronic storyboards is challenging. As a socio-technological, system many factors can

influence the “performance” of teams during the study including participant backgrounds and interests, interaction

modalities, and tool responsiveness. To address this concern we will frame an electronic storyboard as a boundary

object [123] within the context of computer-supported collaborative work. Boundary objects are “shared informa-

tion artifacts” that support exchange and transmission of information between different domains and communities of

practice.

Boundary objects have been studied extensively within Computer Supported Collaborative Work (CSCW). Med-

ical orders [124], data bases [125], spreadsheets, architectural diagrams, and timelines [126] have all been identified

as boundary objects and have been used to examine how groups utilize these objects to conduct collaborative and

cooperative work. The definition of what constitutes a boundary object is broad and the concept has been expanded in

areas of boundary negotiation [127], assemblages [124], cultural probes [128], and boundary zones [129] to describe

additional forms of work and collaboration. Furthermore, boundary objects need not be static objects but can be items

that are built during a process or appropriated from other disciplines [130].

By modeling electronic storyboards as boundary objects, we can leverage established boundary object properties

and existing usability approaches to evaluate electronic storyboards and conduct a user study. However, because the

notion of boundary objects is very broad, our expected use cases must be properly established. We address these two

issues in the remainder of this section. In Section 4.2 we outline a model of design for pervasive computing based upon

45

three properties: computation, user interaction, and physicality. Leveraging boundary objects, we discuss how those

properties are expressed in collaborative design. From this model we outline a user study in Section 4.3 to evaluate

electronic storyboards as a collaborative design tool. We summarize this work in Section 4.4 and look towards the

study results in the next chapter.

4.2 Modeling Product Design in Pervasive Computing

In this section we provide a model of how design occurs within pervasive computing. We describe design as balancing

of constraints between computation, user interaction, and physicality mediated by boundary objects. Section 4.2.1

describes our model of pervasive systems and Section 4.2.2 outlines how boundary objects are used in collaboration

by design teams.

4.2.1 Pervasive Computing as Balancing Computation, User Interaction, and Physicality

For our boundary object model to be useful we must first describe the potential design in which interdisciplinary teams

may operate. As described in Section 2.1, pervasive computing systems describe a range of systems from wearable

devices to cyber-physical systems. Furthermore, pervasive systems may be composed of multiple devices and have

multiple potential users. To capture this large variety of systems we outline three properties, computation, physicality,

and interaction. In our model, physicality embodies the physical nature of the computing system and includes its size,

weight, look, choice of material, and tangible interaction with the user. Interaction describes the actions, times, places,

and context involving the user(s) that are of interest to the system. Finally, computation represents the sensing and

logic that enact a pervasive computing system’s behavior.

These properties are not meant to be exhaustive, as there are other properties such as cost, life cycle, usability...etc.

that may be considered, but will be used as a framework to describe how design proceeds for pervasive systems.

Given these properties, we propose that design is a balance of constraints [5] and when designing pervasive computing

systems that these properties are not isolated, but influence each other given certain design choices. For example,

the physical size of a system may restrict the availability of sensing and computing resources simply because the

components cannot be contained with the device. Likewise the size of the system is dictated by the needs of the

user and the affordances of the system’s size - a wearable computer is expected to meet particular size and weight

requirements [131] that would not be required of a smart display or ambient interface. Visualizing these relationships

in Figure 4.1 a pervasive system would balance these three properties.

In the next section we explore the mechanism through which teams express these properties and exchange design

ideas. We describe collaborative design through the use of boundary objects and discuss how electronic storyboards

could facilitate discussion of design ideas.

46

Figure 4.1: Pervasive Computing as a Balance of Properties and Constraints

Figure 4.2: Using Boundary Objects

4.2.2 Boundary Objects in Collaborative Work and Product Design

In the previous section we outlined our framing of interdisciplinary design for pervasive computing products. To gain

a better understanding of the dynamics of interdisciplinary teams while using electronic storyboards, we model per-

vasive design as centered around “boundary objects”. Boundary objects are shared information artifacts that enable

transmission of information between different disciplines and communities of practice [123]. As initially envisioned,

boundary objects are physical artifacts that “reside between social worlds (or communities of practice) where [in-

formation] is ill-structured”, can be used in domain-specific as well as interdisciplinary work, and groups working

together with these objects alternate between these uses [132]. As illustrated in Figure 4.2, in each discipline or

community-of-practice, specialized information is “decontextualized” into the boundary object. On the other side that

information is “recontextualized” within a new domain. The value of a boundary object is based upon how effectively

it facilitates this decontextualization and recontextualization process [133].

While the concept is malleable to describe many situations it is best employed when: (1) the objects in use reside

between social worlds, (2) the object is useful for both interdisciplinary and non-interdisciplinary work, and (3) the

object allows groups to collaborate without consensus [132]. This final property, the ability to work without consensus,

47

shields individual participants from the full knowledge of each discipline involved, allowing them to work together

without fully understanding all the discipline specific details.

In collaborative design, the information shared through the object and across boundaries is “pragmatic” [134].

Pragmatic knowledge helps participants understand knowledge differences and the consequences of decisions to each

discipline. Good boundary objects expose knowledge at the correct level of abstraction and with sufficient detail

to enable teams to “learn across a boundary of practice” but “operate in condition of partial ignorance” which is

sufficient to work together and accomplish tasks [135]. These objects help teams span the “conceptual dimension”

of collaboration and promote discussion at the boundaries of practice [136]. These discussions at the boundaries

can result in “breakdowns” where the design must be re-evaluated in the light of additional constraints [27]. These

breakdowns cause iteration on design ideas that are essential to innovation in the design process [32, 137, 138].

Electronic Storyboards as Boundary Objects

In this section we describe in more detail how electronic storyboards, as opposed to traditional storyboards [139, 140],

function as boundary objects. In describing boundary objects, Star writes about the standardized collection methods

employed by Grinnell [123, p.406]:

The method protocols themselves, and the injunctions implied, are a record not only of the kinds of

information Grinnell needed to capture for his theoretical developments, but of the conflicts between the

various participating worlds. In a sense, each protocol is a record of the process of reconciliation.

The key method in coordination within Grinnell’s museum was a check sheet that aligned the practices of profes-

sional biologists and local trappers. For electronic storyboards, we too have a “check sheet” that are the models and

meta-models defined in Chapter 3. These models represent the required information to describe pervasive computing

systems and provide a “standardized method” of reconciling disciplinary information between design and engineering

participants. Examining the meta-models more closely, the key information that is required is the logical ordering

and description of the events, actions, and states of the underlying computing system. Selecting this information is

intentional as we believe it provides the correct level of abstraction to enable collaboration between design and engi-

neering. To allow this information to be expressed more easily we utilize storyboarding to focus on the user experience

as a common touch point for expressing design and computational concerns. As we will see in the next chapter, as

participants storyboard, apply tags, and respond to queries, they express computational, user experience, and physical

concerns about the system under design.

While it is difficult to formalize more rigorously as our participants are from multiple disciplines, in describing the

user experience, participants are provided an opportunity for their disciplinary knowledge to impact the definition of

the pervasive system. Our selection of storyboard is critical to that expression as it attempts to balance the relationship

48

between the two disciplines. Other boundary objects, such a programming languages, diagramming tools, foam mod-

els, or renderings could be used, however we believe alternative form do not allow a balance of concerns and would

not enable “equitable relationship” between participants [141].

While we have identified electronic storyboards as boundary objects, electronic storyboards offer a distinct advan-

tage over traditional boundary objects as they can serve as “design critics”. Opposed to traditional media, electronic

storyboards can actively point out “breakdowns” to design teams and afford different types of “talk back” [26] and

offer reflection that may not be possible with passive media [27, 138]. As described in the previous section, these

“breakdowns” are critical to advancing the design process through re-evaluation of design ideas.

In the next section we will examine how electronic storyboards enable design teams to experience “breakdowns”

through the physical storyboard interface like traditional media, and computationally though queries during compila-

tion and design outputs produced by the tool.

4.3 Developing a User Study

In this section we outline a user study to evaluate the effectiveness of electronic storyboards. We present four questions

to be answered by the study and outline an experimental setup involving interdisciplinary teams.

4.3.1 Study Questions

Based upon the model of design presented in Section 4.2 we describe four questions to be addressed through the user

study. Questions 1 and 2 explore how electronic storyboards help design teams express and iterate on design ideas

within the study. Questions 3 and 4 assess more generally the usability of electronic storyboards.

Question 1: How do electronic storyboards support design discussion?

A major drawback of existing tools identified in Chapter 2 was the inability to express designs across domains. We

propose electronic storyboards as a remedy for that situation as the free-form sketching allows for expression of

a large set of ideas. As a boundary object, electronic storyboards must be able to “push and pull the right kinds

of information” between disciplines [141]. In the context of pervasive design, electronic storyboards must be able to

facilitate discussion and expression of design properties outlined in Section 4.2.1. To evaluate this property we employ

two methods: (1) four questions to assess participant sentiment regarding how electronic storyboards helped them work

with each other and understand the design space from Section 4.2.1, and (2) an analysis of design conversations and

activities during the study.

First, after the study each participant will be asked if: “I feel that using electronic storyboards help me...”: (1)

communicate with my team member, (2) understand the physical properties (size, form, placement...etc.) of the

49

prototype, (3) understand how the user interacts with the prototype and (4) understand the computational properties

of the prototype (e.g. how and when to respond to an event, when to make decisions, the overall complexity of the

design... etc.). Responses to the questions are on a five point scale from Strongly Disagree to Strong Agree. This

questionnaire will provide an aggregate understanding of how electronic storyboard support design discussions.

Second, while boundary objects are central to collaborative design, face to face communication and relationship

building is necessary to support these objects [133, 142, 143, 144]. As Fischer described: “The interaction around

a boundary object is what creates and communicates knowledge, not the object itself.” [136]. To assess how these

different facets support design discussions we will analyze participant conversations and actions while using each

element of the electronic storyboard through audio and video transcripts of the user study. Electronic storyboards are

multi-faceted boundary objects that have several points of contact. Teams can storyboard, respond to queries from

the tool, and examine outputs from the tool. We we will note what types of design discussions took place (what

aspects of the prototype the teams discussed) and what activities were occurring during that discussion (storyboarding,

responding to tool queries, examining tool outputs...etc). Our assumption is that through conversation [145, p.371],

interacting with the tool, and sketching teams explore the design space of the prototypes within the prompts.

Question 2: How do electronic storyboards support design iteration?

In time-constrained environments more iterations over time lead to better results [32]. One anticipated benefit of

electronic storyboards is that they will help design teams iterate on their design process by actively promoting iteration.

As discussed in Section 4.2.2 electronic storyboards are distinguished from traditional design tools by their ability

to “talk back” to the design team. Through “talk back”, whether computationally or otherwise, design teams can

experience “break downs” that advance the design process [138]. To understand how electronic storyboards support

iteration, we focus on team interactions with the queries generated by the tool, and the team’s utilization of storyboard

outputs to reflect upon their design. While teams may experience break downs or iteration during storyboarding, our

analysis will focus on the “active” rather than the “passive” elements of electronic storyboards.

When designing boundary objects it is important that the interfaces to the object be familiar to the users [138].

As these objects are used in interdisciplinary settings, often the interface or method of interaction is defined by one

particular domain. If one discipline/domain becomes dominant, it may create inequitable relationships between the

collaborating parties [141]. A similar situation exists with electronic storyboards as storyboarding itself may be unfa-

miliar to computing participants while state charts and source code may be unfamiliar to non-computing participants.

For the user study, while there is no perfect representation that can be provided, at the end of each task will we ask the

participants which output representation they preferred and how they would use these representations to understand

their design.

50

Question 3: Are electronic storyboards usable by design teams?

Beyond being a vector to understand design teams, electronic storyboards are a software tool subject to the same usabil-

ity requirements as other programs. Regardless of how electronic storyboards support design discussions or iteration,

if the tool is not usable by design teams then it will be of no benefit to them. We evaluate the usability of electronic

storyboard through severals approaches, first we employ a System Usability Survey (SUS) [146, 147] to assess general

usability of the tool. Given our Wizard-of-Oz setup, SUS questionnaires may not typically employed. Therefore our

SUS results cannot be used to compare against other systems evaluated by SUS, but since it was administered to all

participants in the same manner, it provides a quantitative measure of usability among the participants.

Part of the usability of electronic storyboards is that it provides benefits to the design team by facilitating discussion

and generating source code that could be implement future prototypes. Code generation is anticipated to be a perceived

benefit for computing participants. All participants will be asked in post-study interviews how they believed this tool

could help their existing practice. Finally, with the Wizard-of-Oz setup, there may be instances where the proctor has

to intervene to address unexpected situations. The causes of these situations will be noted as how they affect usability.

Question 4: How did the underlying models and transformations perform?

In a final examination we look at how the models and transformations outlined in Chapter 3 held up during the user

study. When developing electronic storyboards several design choices were made regarding expressing computational

information, use of natural language processing, and selecting an underlying model of computation. While these

decisions were driven by our experiences and sample storyboards, user input from the study may be different. To

ensure this data is collected the proctor’s interaction with the tool was recorded during the study including all queries

and outputs produced by the tool. Participants were not restricted in how they storyboarded, except that they use

the tags, frames, and arrows to indicate information and layout. Given the variety of inputs expected, did the models

described in Section 3.2.3 accurately reflect what participants produced? Additionally, were the model transformations

described in Section 3.3 sufficient for the participant storyboards?

4.3.2 Experimental Setup

To assess the underlying mechanics and concepts of electronic storyboards we conducted a user study with six teams

of students from various disciplinary backgrounds. In this study we used a Wizard-of-Oz setup where the teams

themselves did not directly use the tool, but created typical paper storyboards that were then transfered into our

electronic storyboarding tool by the study proctor. Teams would produce paper storyboards with colored annotations,

as in Figure 4.3, which would be directly transfered into the electronic storyboard as in Figure 4.4. Having the proctor

operate the tool allowed the design team to focus on their storyboarding and responses from the electronic storyboard,

51

Figure 4.3: Participant Storyboard for Prompt 2

Figure 4.4: Transferring paper storyboard from Figure 4.3 into electronic format.

rather than learning how to operate the electronic storyboard itself. Conducting the user study will allow us to better

understand how interdisciplinary teams use electronic storyboards and will improve future iterations of the tool.

As will be outlined in Section 4.3.1, throughout this study we observed how teams storyboarded, discussed the

properties of the interactive systems, and how they responded to questions by the electronic storyboarding tool. Af-

ter completing the user study each team was asked to fill out a modified System Usability Scale (SUS) question-

naire [146, 147] asking whether they agreed with certain statements about their experience. Four additional questions

were added to the SUS questionnaire to evaluate whether electronic storyboards supported team communication, and

understanding of computing, user-interaction, and physical form properties of storyboarded systems.

Participant Selection

Each team in the study contained two members, one had a “computing” background and the other was from an alternate

discipline. Table 4.1 provides a list of study participants, their team number, and their disciplinary background. All

participants were either graduate or undergraduate students at our university. The six computing participants had

backgrounds in computer engineering, computer science, and human-computer interaction, while the non-computing

participants backgrounds ranged between chemistry, industrial design, fine arts, and social sciences. These participants

were selected as they are representative of future interdisciplinary teams that may find electronic storyboards useful.

52

Team Participant Discipline

1 P1 Computer Engineering
P2 Fine Arts

2 P3 Computer Engineering
P4 Chemistry

3 P5 Computer Science
P6 Science Technology & Society

4 P7 Computer Science
P8 Instructional Design

5 P9 Computer Science
P10 Industrial Design

6 P11 Computer Engineering
P12 Industrial Design

Table 4.1: Study Participants

Figure 4.5: Two frames from a user annotated storyboard indicating State, Event, and Action tags

Protocol

Each team was provided 10-15 minutes of training that described storyboards and showed typical examples from

industry and academia. The team was also instructed about electronic storyboards and how the team could utilize tags,

natural language processing, and layout to create automatic descriptions of interactive devices. After training each

team was given three prompts that described an interactive system and was asked to storyboard that narrative. The

participants were not restricted in how they storyboarded, except that the narrative contained frames or arrows where

necessary to determine layout. No time limit was imposed on the participants but they were naturally limited by the

own schedules. Accordingly, each study took approximately 75 minutes to complete.

While storyboarding, the team was asked to apply State, Event, and Action tags from Table 3.1 to their storyboard

using colored markers to indicate if that information was present in a particular frame. A sample storyboard is shown

in Figure 4.5 with States, Events, and Actions indicated in Blue, Orange, and Red, respectively. These tags were to

indicate the states, triggering events, and responsive actions of the storyboarded system. Once the team felt they had

completed their storyboard it was implemented in the electronic storyboard tool by the study proctor. The role of the

proctor was to transfer the layout and tags of a paper drawn storyboard into an electronic one as in Figure 4.3. The

electronic storyboard was then compiled into the three different outputs as in Figures 4.6a-4.6c. Any questions raised

by the tool (to resolve ambiguous or missing information) was relayed to the team by the proctor.

53

(a) Statechart (b) Source code (c) Textual

Figure 4.6: Three representations generated for user study.

Throughout the study, participants were subject to audio and video recording. Team members were not instructed

on how to work together, or what roles each member should assume. Accordingly, team conversations reported

in this study are naturalistic and were not prompted by the proctor, except during the post-study interviews where

participants were explicitly asked about their experience. During the study the proctor did not intervene into the

team’s storyboarding unless the participants were significantly off task. This occurred infrequently throughout the

study, however on a few occasions teams would confuse the definitions of Event, Action, and State tags. These

situations are described in more detail in the discussion section.

Task Selection

Each team was asked to storyboard three narratives that described a pervasive computing system. Prompt 1 was very

simple and described a child who is wearing a smart watch. While outside playing, the watch beeps because he has

received a text message from his parents. This initial prompt was expanded in Prompt 2 where after receiving the

message the child could decide to press a button on his watch to display the message, or shake his wrist to make the

message go away. Prompt 3 described a young girl who often forgets items when she is leaving for school. The prompt

asked the team to storyboard her getting up one morning and rushing out to the bus, but as she exiting the house, the

reminder system attached to her book bags warns that she forgot her science book. Following this alert, she runs back

inside to retrieve her book and still makes it to the bus in time.

Prompt 1 describes baseline behavior that should be easily storyboarded by the participants. The story described

in Prompt 1 is very linear and should only use a handful to tags to convey the information. An example storyboard

of Prompt 1 is shown in Figure 4.5. Prompt 2 is more complex and requires the participants to apply more tags,

but also use arrows within the storyboard to indicate branching behavior as the user has to choose between reading

or dismissing the message. Prompt 3 presented a different challenge as the story was more complex and potentially

required the participants to use loops for entering and exiting the house with and without the book. Furthermore,

54

the means by which the reminder system knew the book was missing was not specified and provided the teams an

opportunity to discuss what technologies or sensing systems might be used.

The prompts selected for this study do not fully explore the design space as outlined in Section 4.2.1. The three

prompts only cover a some set of possibilities that relate the computing, physical, and user interaction elements of

pervasive systems. It is not our intention to explore the entire potential space, but to provide prompts that would be

reasonable for design teams during the early phases of prototyping. Consequently, these prompts strike a balance

between explicitly defining the device behavior and allowing the design teams to improvise and be creative. As we

will see in the next chapter several teams engaged beyond the prompt as written.

4.3.3 Assumptions and Limitations

In conducting this study there are several underlying assumptions and limitations that must be examined. First, we as-

sume that participants have not previously worked together. Electronic storyboards were derived from our experiences

with novice student design teams. Their difficulties of coordination and expressing concerns across disciplines may be

more pronounced compared to teams that frequently collaborate or have prior interdisciplinary experience. Thus the

amount of time spent on particular tasks or the content of design discussions may be different with more experienced

teams.

Second, the types of prompts provided to the teams directly impacts how challenging their tasks may be and

the properties of the system that are discussed. Prompts 1 and 2 were designed to test the feasibility of electronics

storyboards - if teams cannot express prompts of this complexity it is unlikely that the tool is usable. Prompt 3 was

more open-ended to allow teams to discuss various implementation approaches and technologies. In all of the prompts,

no property (as defined in Section 4.2.1) was under heavy constraint. Teams did not have to optimize their design to

meet stringent computational requirements nor were the prompts so complex to make the user interaction cumbersome.

We do not anticipate electronic storyboards can handle all potential pervasive computing use cases. Future testing is

required to see at what point electronic storyboards “break” for a given prompt.

Finally, our research methods are limited in scope to the general “topic of conversation” and do not provide finer

grain results about the team’s conversations. It is beyond the scope of this work to analyze which properties of the

system each disciplinary group discussed (e.g. Did those with computing background talk about computing properties

more?). For the same reason, information about sub-tasks (e.g. Who did most of the storyboarding/tagging?) is not

considered in this work. This information would be useful in future studies to understand in more detail what types

of information each discipline communicates, finds important, and which types they have difficulty reconciling with

their own practice.

55

4.4 Summary

In this chapter we have proposed a model to evaluate electronic storyboards as a boundary object. Recognizing that

electronic storyboards are a complex socio-technological system, we proposed qualitative and quantitative methods for

their analysis. Four user study questions were outlined that assess how electronic storyboards support interdisciplinary

teams in expressing design ideas, reflecting on those ideas, determine the usability of electronic storyboards, and

evaluate the reliability of its underlying models and transformations. We examine the results of a user study in the next

chapter that answers these questions.

56

Chapter 5

Results

This chapter presents the results of the user study outlined in Chapter 4. We address Research Question 3 by answering

four questions major questions regarding electronic storyboards. First, in Section 5.1 we examine how storyboarding

and tagging support discussion of pervasive computing design properties. Second, in Section 5.2 we show how tool

queries and outputs support iteration and revision of design ideas. The remaining Sections 5.3 and 5.4 deal with the

usability of electronic storyboards and how the underlying model-driven engineering approach performed during the

study. Finally, we summarize these results and evaluate our design choices throughout this dissertation.

5.1 Supporting Design Discussions

This section provides qualitative and quantitative analysis to explore how electronic storyboards support design dis-

cussions about pervasive computing systems. During the study we observed that teams discussed design properties

via two main mechanisms: the manual storyboarding and depiction of the prompt and the application of tags to the

storyboard. Overall, storyboarding and tagging facilitated significant discussion of the computational properties of the

device and moderate discussion of the user-interaction. Very infrequently did the design teams discuss the physical

properties of the device.

5.1.1 Discipline-based Sentiment

After the user study participants were asked to respond on a five-point scale whether, “I feel that using electronic

storyboards helps me...”: (1) communicate with my team member, (2) understand the physical properties (size, form,

placement...etc.) of the prototype, (3) understand how the user interacts with the prototype and (4) understand the

computational properties of the prototype (e.g. how and when to respond to an event, when to make decisions, the

57

Figure 5.1: Discipline-based Sentiment

overall complexity of the design... etc.). Participants responded on a 1-5 scale whether they Strongly Disagreed (1),

Disagreed (2), Neutral (3), Agreed (4), or Strong Agreed (5) with a statement.

A one-sample t-test was used to compare the mean participant responses against an assumed “neutral” response.

A null hypothesis (H0 : µ = 3) assumed that participants were “neutral” towards a question, while the alternative

hypothesis (H1 : µ > 3) assumed they “agreed” with a question and found that aspect helpful. Hypothesis tests

were conducted at 95% confidence. Figure 5.1 shows the mean score for computing and non-computing participants

with one standard error in each direction. Asterisks on the scores indicate statistically significant agreement with the

question. Results show that computing (p=0.036) and non-computing (p=0.037) participants agreed that the electronic

storyboards helped them communicate better with their team members, computing (p=0.037) and non-computing

(p=0.0052), agreed it helped them understand the computational properties of their prototype systems. Only non-

computing participants (p=0.046) felt electronic storyboards helped them better understand the user’s interaction with

the prototype.

The quantitative results presented in this section provide backing to the qualitative results in the remainder of this

section. We will see in Sections 5.1.2 and 5.1.3 support discussion of computational properties and user interaction.

As foreshadowed in Figure 5.1, few teams discussed the physical properties of their storyboarded systems.

5.1.2 Storyboarding

Storyboarding the study prompts required the teams to represent the device, how it received input, and how it responded

to certain situations. While drawing the storyboard, depicting simple responses such as “beeping” or “pushing a

58

button” and more complex interactions such as how to represent an “incoming message”, provided teams a way to

discuss how information should be expressed and qualified. Example storyboards are shown in Figures 5.2a and 5.2b.

“P2: to represent a message coming I would draw an arrow with a dash to say that some information is coming.

Through a satellite.” Drawing these interactions also facilitated discussion about the specifics of how an event should

occur. For example, when discussing the alert sound of the watch: “P2: the beep has to be high-pitched so it can be

heard in any kind of environment.”. Team 1 expanded this discussion to consider the situation of deaf persons and

whether or not the current system was appropriate, “P2: I don’t know if it’s part of my job here but imagine somebody

who is deaf. It could vibrate.”

While Prompts 1 & 2 largely described the technology in the system, Prompt 3 did not specify how the reminder

system knew a book was missing and provided teams an opportunity to discuss what technology or sensing methods

were required. “P10: the point where it’s sensing she’s missing something, do we just need to make up the technology

there? P9: we can say, we can make it up. I think the input would be.. we can suggest some sensor.” Team 1 discussed

a specific technology and whether the device would scan continuously or only at certain time, “P2: somehow I don’t

know how it’s supposed to work. I guess you’re supposed to have some barcode or something, or some cheap? P1: or

RFID or something like that. But that’s the question, is it constantly scanning or is it a one-time scan, and then it’s

done for the rest of the day.”

When drawing the storyboard the teams had to lay out the set of frames that described their story. During training

the teams were told that branching or divergent behaviors could be expressed using arrows to connect independent

frames. Prompt 1 was generally described with a linear flow while Prompt 2 had branches to show divergent behavior.

‘‘P10: so one branch needs to be shaking to make it go away the other needs to be tapping.”. An example of branching

is show in Figure 5.2c.

While we expected the storyboards to facilitate discussion about the physical form of the device, this was rarely

discussed by the team. This finding follows from the questionnaire results in Figure 5.1 where physicality was ranked

the lowest. One explanation maybe that while the prompts did not specify how the devices should look, they used

canonical devices that have an implied or known form. For example, two prompts dealt with a smart watch and the

other a reminder system that attached to a book bag. Given the existence of consumer wearable products, there was

not significant discussion of the watch’s form and many took on a squarish shape with one team commenting, “P12:

I don’t know why I resorted to a square, I guess a square made me think of a smart watch.” Similarly, the reminder

systems was described as something to fit on a book bag and had limited interaction with the user (a single button

press). As the form of this system did not impact the functionality or the user interaction it was unlikely to warrant

significant discussion.

59

(a) The user pressing a button.
(b) Responding to input by dis-
playing to the screen.

(c) Branching to show independent
paths

Figure 5.2: Use of storyboarding to user interaction, logical flow and responsive actions of the device.

5.1.3 Tagging

Using the State, Event, and Action tags, the design teams annotated their storyboards to indicate important information

regarding the prompt. These tags directly support discussion of computational design properties as the team must

determine what information to tag in the storyboard, what to name tags, and which tags to apply. Often this involved

discussion of what information a device must need before taking some action. A few examples of this discussion come

from the reminder system prompt where the device needs to check for a missing book once the user exits the house.

“P5: (remember) the box needs to be in some state that triggers it to check for the text book. P6: departing is fine.

P5: or ah, missing item? ” and “P7: It’s got to be in a state where it’s like, I need to do an inventory.” Another group

discussing the same prompt commented, “P3: so it doesn’t know about that, but it does know leaving house again.

But it does nothing because there’s some sort of trigger on having a book. P4: right, because now it’s satisfied.” In

determining the name of the tag, the team is deciding what the device is actually doing: “P1: so do we want to call

this beeping, processing.. P2: or alarm?”

However, the tags were not fool proof and the difference between events and actions were often confused with one

being substituted for the other. The explanation provided to teams during the study was that Events are triggers or

inputs to the device, and that Actions are outputs or responses of the device. Frequently participants would interchange

the two terms and confuse Events for Actions. This confusion normally occurred during the first or second prompt and

the participants would eventually corrected themselves. Figure 5.3a shows Team 2 mis-tagging the events and actions

of the smart watch. Soon after drawing “beeping” they realize their error, “ P3: event is orange? P4: event, it beeps.

and action is red, read message. P3: or it’s the other way around, the event is an input to the device (re-reading the

study instructions). The event is actually message received and the action is beeping. P4: oh I see.”

Similar difficulties were found with State tags as teams considered “state” to be the state of the person in the

storyboard rather than the state of the device. Team 6 confused State tags as shown in Figure 5.3b. “P11: so here,

happy outside is describing the state of the frame, as opposed to the state of the device. So this would be Normal?

P12: on wrist? P11: the normal state. This would be P12: oh that makes sense. It beeps, it’s the device.”

60

(a) Event and action tags. (b) State tags.

Figure 5.3: Mis-tagging storyboarding information.

One explanation of tag confusion could be that participants focused more on the person in the storyboard rather

than the device. Considering that teams were provided a narrative that described a human user and that person’s

interaction with some electronic system, it might be more natural for the participants to focus on the human rather

than the computer. Given our definitions of event and action, what could be an action to the user, such as pressing

a button, is equally described as an event to the device, receiving the button press. P6 commented in the post-study

interview, “P6: In the first prompt the human wasn’t doing anything that wasn’t directly connected with the device. In

the second one she was going in and out of the house, she was looking at the bus and stuff like that. It contributed to

this confusion I think when we drew the story first and then had to tag it afterwards.” We discuss the impact of this

“user-centered focus” in Section 6.1 where we present guidelines for future design tools.

5.2 Supporting Design Iteration

Once the team had drawn and tagged their storyboard, an electronic version was created by the proctor and entered into

the tool. While compiling this storyboard into a timed automaton the tool would ask questions to resolve ambiguous

or missing information. Examples of this situation included asking for missing events or actions between states or

61

Figure 5.4: A tagged event with no corresponding action identified by the tool.

Figure 5.5: Portion of a generated state chart with discovered action “stopbeeping”.

resolving the relationship between events and actions if multiple were present. This questioning benefited the design

teams by providing new representations of their design through which they can evaluate their depicted behaviors.

Additionally, this process can “check” the storyboards to determine if triggering events have been correctly paired

with responsive actions, or if extraneous tags are present.

5.2.1 Iteration through Queries

Queries from the tool often helped teams find missing information from their storyboard. An example of a missing

action found by the tool is shown in Figure 5.4. Team 5 wanted the smart watch to stop beeping after some time and

tagged the event “time passed”. However, the team did not tag any related actions and when parsing the storyboard

the tool could not pair “time passed” with an action. Seeking to find a responsive action the tool asked the team to

specify whether or not there was an associated action. This query was displayed on the tool console and relayed to the

design team via the proctor, “Proctor: what is the response to the event time passed? P9: stop beeping? P10: yeah

silenced.” The proctor then typed in “stop beeping” into the tool console to provide the team’s response.

Figure 5.5 shows the resulting state chart where the action “stop beeping” has been added by the tool. Similarly,

Team 6 tagged an action called “pack bag” in their reminder box storyboard. This action was not a required part of the

storyboard and was an extraneous tag. The tool tried to pair that action with multiple events throughout the storyboard.

62

(a) Deadlock (b) Missing item.

Figure 5.6: Using statecharts to evaluate design ideas.

Each time the design team declined the tool’s choice. By querying the design team the tool was able to determine that

“pack bag” was not important to the operation of the storyboarded device and eventually dropped the action.

5.2.2 Iteration through Code, Text, and State Charts

In addition to the questions posed by the tool, providing a new output representation of their storyboards allowed the

teams another view of their storyboards to discover missing information. In particular, one team discovered that they

had not specified a certain transition and also that the storyboard they had drawn was stuck in a loop. Viewing the

statechart in Figure 5.6a their storyboard the team commented: “P1: You see how we have this display that’s hanging

off, how do you stop it from displaying?” In discussing the problem, the team debates different ways to alleviate the

situation “P2: I think it should be part of a condition, not the result of an event, you know it could stop displaying

automatically. P1: it could. P2: or it could respond to an action, an event, press again. P1: or could it be shake?”

Similarly, Team 3 used the statechart in Figure 5.6b commenting, “P3: I think that there needs to be a connection

between, ... something is missing between displaying the message and retrieving the item. She can’t go straight from

... she needs to retrieve the item before she leaves the house.”

Across the teams, most members preferred the state chart view as a primary source, with the text and source code

being secondary. “P4: The flow diagram [state chart] makes it very simple. The words are kind of nice if I had a

question. The code, I don’t know what it means.” Several participants commented that the text view was helpful, but it

became cumbersome as the complexity of the design increased. “P6: And the text. It was sort of a natural thing that

I went to the first time, and now that it’s long I think that the visual portion is much easier to understand and faster.”

63

Figure 5.7: System Usability Score

Even team members who had not been accustomed to state charts found them more useful as the study went on. “P6:

I like the chart view better now. P5: it’s definitely the easiest one for me to parse.” Similarly, some participants

found the source code would be helpful during an actual implementation, but was not helpful when understanding the

high-level behaviors of the device.

5.3 Addressing Usability

In this section we address the general usability of electronic storyboards. In Section 5.3.1 we discuss the results from

the SUS questionnaire administered after the study and examine how long participants took to accomplish the study.

In Section 5.3.2 we report on participants comments on their perceived utility of electronic storyboards and how it

might help their practice. Finally, in Section 5.3.3, we examine points in the study where the proctor intervened when

groups were off task.

64

5.3.1 SUS and Task Times

System Usability Scale

This section presents the results from the the post-study usability survey that was administered to each team. Figure 5.7

shows the individual usability scores from the six teams in the study along with the average for each disciplinary

background. In these results we differentiate between our computing and non-computing participants. The range of

usability scores indicates that participants had varying positive and negative experiences with the study. While half

the participants provided scores over 70, which indicates an ’average’ result, one participant in Team 5 had significant

difficulty and reported a score of 27.5. Looking at this participant’s individual responses, they were not very confident

using the system and felt it was difficult to use.

Overall, participants with a computing background provided a higher usability score. This outcome may be ex-

pected as during the study the computing participants would often guess or infer “what’s under the hood” of the

electronic storyboarding tool. Frequently they would anticipate future problems or even indicate behaviors the tool

“should handle.” This extra knowledge may have made them more confident in using the tool. In one session the team

drew a storyboard that contained looping behavior and they discussed if that was acceptable. The computing member

commented, “P3:...[the tool] should be able to handle it.”

Task Time Based upon Prompts

All teams were able to complete their assigned tasks during the study and agreed that the outputs produced by the

tool described their system. Figure 5.8 shows task time for each group during the study. The reported time (in

minutes) indicates how long it took the teams to arrive at a final storyboard that they agreed implemented the prompt.

The submitted storyboard may have been their first draft, or one that had been compiled and modified several times.

Examining the task times, Prompt 1 and 2 took less than 15 minutes each. State chart solutions from Prompt 1 were

generally “linear” as in Figure 5.9a. Prompt 2 was an extension of Prompt 1 and asked teams to enable the user to

dismiss or read the message that was received. Figure 5.9b shows a typical solution for this Prompt. Not all solutions

to Prompt 2 where exactly as Figure 5.9b - some teams added additional features for the watch to return to an idle state

by shaking the wrist or by ignoring the message. Overall, the results of Prompts 1 and 2 indicate that teams can use

electronic storyboards at a basic level by indicating branching behavior within the storyboard.

Prompt 3 was more difficult for the participants and took between 13 and 29 minutes across all teams to complete.

Prompt 3 was more ambiguous about how the device should be implemented and caused the team to discuss various

solutions. For example, the teams were not told how the reminder system knew an item was missing and it did

not specify what happened after the user returned inside and retrieved the book. Consequently the storyboarded

solutions varied across participants. Figure 5.10 shows two different solutions to Prompt 3. One team implemented

65

Figure 5.8: Time until final storyboard submission for each group.

the system exactly as described in the prompt as in Figure 5.10a, while other teams tried to express looping behavior

as in Figure 5.10b. The main concern for teams was how to express conditional events upon exiting the house ,e.g.,

to sound an alarm when exiting the house without the item and not to alarm if the item was present. While teams

could verbally express what they wanted the system to do, some found it difficult to sketch that behavior within the

storyboard.

One reason for the difficulty with Prompt 3 was the lack of variables or complex conditional events within the sto-

ryboard. Conditional events, such as “A and not B” are supported by the underlying models in electronic storyboards

but were not exposed to the users to avoid confusion. We anticipated these complex events would be given a event

name, and the complexity of that event would be address during implementation. We address the relationship between

the tool interface and its underlying models in more detail in Section 6.1.

Task Time Based upon Activities

Examining the team activities in more detail, we divided the team’s activities into three phases: storyboarding and

tagging, responding to tool queries, and examining outputs produce by the tool. Figure 5.11 shows the total amount

of time each team spent on each activity during the study. On average, teams spent 33 minutes storyboarding, 4

minutes responding to queries, and 8 minutes examining the tool outputs. These times are the aggregate of team

activities across all prompts - teams did not spend 33 continuous minutes storyboarding. As discussed in Section 5.2,

66

(a) “Linear” solution for Prompt
1 (b) Branching solution in Prompt 2

Figure 5.9: Typical Prompt 1 and 2 solutions

some teams iterated on their ideas based upon tool queries or examining the tool outputs. Figure 5.11 indicates the

importance of storyboarding and sketching as it was the primary activity that teams engaged in. Ideally, the time spent

responding to queries and examining outputs would be minimal, indicating that teams “correctly” storyboarded their

systems and the tool produced outputs that reflected the team’s ideas.

5.3.2 Reported Tool Benefits

When developing electronic storyboards we anticipated that computing participants would find automated code gen-

eration beneficial. From the post-study interviews, four of the six computing participants expressed a negative or

doubtful regarding the benefits of code generation. P1 commented that he would rather code the device outright. P5

expressed skepticism that code generation could produce bug free code based upon his experiences with the current

tool, “P5: It’s most useful for like template to do something and I go fill in the specifics. I would be, based on what

we just discovered, there’s a lurking bug that I might hit or not hit. I would find the code generation useful that I was

absolutely confident it didn’t introduce a bug.” P9 felt that code generation could be useful for novices as a means to

find a direct translation from state charts to source code. The two other computer participants expressed support for

code generation with one commenting specifically that it would be helpful to generate skeleton code or templates and

then modify the results.

In contrast to these opinions, P10 who was an industrial designer, commented positively on code generation and

related it to her existing practice stating, “P10: yeah definitely, especially in the early stages I would only say that

because we would like make storyboards in [Adobe] Illustrator to make them pretty. So obviously this (generated

code) isn’t a pretty version that we would consider, but in the earlier stages I would say yes conceptually.”

67

(a) Prompt 3 Linear (b) Prompt 3 Looping

Figure 5.10: Varying solutions for Prompt 3

Two reasons may help explain the participants negative response to source code generation. First, the tool used

in the study is experimental and the participants had never worked with it before. Perhaps the beta nature of the tool

and their limited exposure to it contributed to their unease. Second, the computing participants all had significant

programming experience and were graduate level students in either computer engineering or computer science. Given

their level of expertise they may feel more confident relying on their own skills.

5.3.3 Proctor Intervention

One a handful of occasions the proctor intervened into the user study to correct some participant actions. These

situations occurred when the team was outside the parameters of the study or had directly requested help from the

proctor. Minor interventions by the proctor included asking the participants to clarify the spelling of a tag while

entering the storyboard into the tool or asking the teams to number their frames to clarify layout. More extensive

interventions occurred when a team had deviated from the establish protocol such that it would impact the study

results. This happened on two occasions when the proctor reminded teams how tags were defined. As discussed in

Section 5.1.3 tagging was frequently used by the teams but at times they confused events for actions or labeled states

as the states of the person in the storyboard, rather than the state of the device. A final intervention occurred with Team

6 due to a concern that they were “over-tagging” states within their storyboard and would make the final compilation

challenging for them. The team was assigning a state tag for every frame which was not required. The team was

notified of this but continued with their storyboard and completed the task.

68

Figure 5.11: Team Activities by Time

5.4 Assessing Models and Transformations

The previous questions have analyzed team performance and usability of electronic storyboard. In this section we look

at how the underlying models from Chapter 3 performed during the study. Notably we examine how our assumptions

in layout and tagging were tested.

First, no storyboards generated by the teams were outside the model parameters. All teams produced storyboards

with frames, connectors, and tags that could be directly entered into the electronic storyboard tool. However, one

unexpected condition was found early in the study and corrected. Team 1 frequently used loops to describe their

prototype’s behavior. Their use of loops made it difficult to find a “starter frame”. A starter frame is considered the

first frame of the storyboard and where Layout Analysis, described in Section 3.3.1, begins. The original definition of a

starter frame was the left-most frame with no inbound connections or neighbors. Team 1 had loops back to their starter

frame and required the modification to query the proctor to manually select which frame to begin layout analysis.

Related to layout, an error was found in local synthesis where three blocks of frames joined by connectors. Usually

a team would have one large block of frames describing the main story, and then one or two branches off the storyboard.

However with three blocks of frames linked A → B → C, the recursion in local synthesis did not reach block C. As

the three blocks were actually linear, these were not branching conditions, blocks A and B were joined to implement

synthesis AB → C.

Finally, given the large number of tags used by participants all potential query types were encountered during the

study. Participants encountered queries where: (1) all information was specified and the tool was confirming with the

69

user, (2) missing actions or events were to be manually specified by the users, and (3) multiple events and actions

were found and had to be resolved through iterative questions. This latter type of queries, where multiple events and

actions were present, were most difficult for teams. Teams never disagreed with confirmation of the type-1 queries

and frequently used type-2 queries to iterate on their designs or discover missing information as in Section 5.2.1.

5.5 Summary

This chapter presented the results of a user study to evaluate the impact of electronic storyboards on interdisciplinary

teams. With these results we now reconsider Research Question #3 which stated: What is the impact of an electronic

storyboarding tool on interdisciplinary teams during prototyping? Overall there are five main findings:

Finding #1: electronic storyboards support discussion of design properties through physical storyboarding and

through tagging of events, actions, and states within the storyboard. These discussions help teams explore how the

device interacts with the user and the logical progression of the device to meet the user’s expectations. Some teams

found “virtual” items like “receiving a message” or “scanning” difficult to visually represent.

Finding #2: electronic storyboards support iteration on design ideas through queries and evaluation of tool outputs.

Queries and outputs provided an additional “representation” of the storyboarded systems for teams to consider and

helped them identify missing information in the storyboard and resolve the exact relationship between events and

actions tagged in the storyboard. Tagging was more difficult for some teams as they focused on the user rather than

the device.

Finding #3: electronic storyboards are usable by interdisciplinary teams. All teams within the study were able to

utilize sketching, framing, and tagging to express their design ideas. All teams were able to complete their assigned

tasks, respond to tool queries, and understand the tool outputs. Computing participants were mixed on the anticipated

benefits of code generation while some non-computing participants responded positively.

Finding #4: natural language processing was used less frequently than expected during the user study. While many

design teams had textual annotations within their storyboard teams placed many tags in their storyboards. During local

synthesis the multitude of tags was sufficient to resolve any ambiguous information and tool tool queries did not present

any results from natural language processing.

Finding #5: participant response to generated code and tool outputs was more mixed than expected. Computing

participants reported positive and negative attitudes towards generated code. However, all participants were able to

use state charts to examine the storyboarded systems.

Finding #6: electronic storyboards may be more useful for interdisciplinary coordination rather than rapid proto-

typing. One anticipated benefit of electronic storyboards was the ability to derive code from the storyboards. However,

in Section 5.3.2 we found computing participants did not see this benefit. Returning to the challenges of interdisci-

70

plinary design described in Section 2.2, electronic storyboards performed well by enabling participants to express

design ideas, concerns, and iterate on their work. Establishing what some system “should” do is at times more difficult

than implementing that specific behavior. Future code generation can be made better but only if the starting specifica-

tion defines the “correct” system. The user study has shown that electronic storyboards enable teams to quickly arrive

at that specification across disciplinary boundaries.

In the next, and final chapter, we review our work and look towards future directions in electronic storyboarding

and it’s application to additional domains.

71

Chapter 6

Conclusions and Future Work

Motivated by the needs of interdisciplinary design teams this dissertation has explored the development of a novel

electronic storyboarding tool and its impact on interdisciplinary teams. Following a model-driven approach, a tool

was developed to utilize tagging, natural language processing, and layout analysis to transform ambiguous storyboard

information into models of computation based upon timed automata. Modeling the activities of design teams using

boundary objects a user study was conducted to determine the impact of electronic storyboarding on teams. Results

from the study indicate that electronic storyboards: (1) support discussion of design ideas through storyboarding and

tagging, (2) support design iteration and reflection based upon tool queries and tool outputs, and (3) were found usable

by participants.

In the remainder of this section we reflect on our work and return to Research Question 3 to offer design guide-

lines for future tools based upon electronic storyboarding principles of sketching, tagging, and active interpretation.

Additionally, we points towards future applications for electronic storyboards in architecture and fashion design.

6.1 Reflections and Guidelines for Future Design Tools

In this section we reflect on our study and present guidelines for future design tools based upon the core ideas of

electronic storyboard - namely inferring design artifacts from informal sketches and storyboards. In Section 6.2 we

describe a few potential future applications.

One important guideline for future interdisciplinary design tools is to retain free-form sketching. As Buxton noted,

“any place that I have seen design... it has been accompanied by sketching.” [1, p.97]. This statement is echoed in

our results in Figure 5.11 where participant teams spent the majority of their time sketching. Sketching within design

tools provides the design team a wide lexicon of symbols and ideas to drawn from. In contrast to icon-based tools

(like dTools [36] or GALLAG Strip [148]) sketching allows teams to express their ideas in whatever form they can

72

Figure 6.1: New model to isolate users from underlying model of computation

draw and not in the symbols provided by a tool. This enables a sketch-based tool to target a larger set of applications

without extension to the underlying language. However, this sketching comes at a price, as an arbitrary sketch cannot

be interpreted by a computer without significant image recognition and training, which would defeat the point of free-

form sketching. Our compromise on this issue was to use tagging that was understood by the interpreting system.

While the tagging system was usable by teams it caused difficulties at times based upon the number of tags present in

the storyboard. We discuss this issue further in our next guideline.

Another guideline for future design tools is to isolate the end-user from the model of computation. In electronic

storyboards, the choice of tags in Table 3.1 was motivated by the need to describe pervasive computing systems at a

high-level, but also facilitate easy mapping between storyboards and the underlying timed automaton as in Figure 3.5.

As reported in Section 5.1.3 teams had difficulty at times with tagging because they focused on the user in the story-

board rather than the device itself. Additionally, when teams had difficulties with queries it was likely because they

had tagged “too many” events and actions and were having difficulty selecting between their choices. Part of the

problem was the inadequate responses provided by the tool, but another part is that the timed automaton model was

“too close” to the users and exposed details that they may not find easy to consider. One indicator of this “closeness”

was the need to tag States within the storyboard. We could find no way to map from storyboards to timed automaton

73

without some notion of state within the storyboard. While Events and Actions could be found with natural language

processing, as discussed in Section 3.2.2, we could find no analogue for State information.

One solution to this problem could be to choose another model of computation. However, depending on the

model selected the same issues of “closeness” may arise. We propose in Figure 6.1 that an additional modeling layer

be inserted to isolate the user from whatever model of computing is selected. This new layer could be more “user

focused” based upon the observations in Section 5.1.3 that showed some participant focused on the user rather than

the underlying device. This isolation may become more important based upon the role of computing participants in

future tools. As described in Section 5.3.1 some computing participants determined what was going on “under the

hood”, however some participants (see P8 in Figure 5.7) had difficulty with the device-based tagging.

Finally, focus on the front and middle of the tool. By this we means to spend significant development time on the

user interface and the underlying models of any future tool. While we expected that the “back-end” of the tool, such

as generated source code, textual descriptions, and state charts, would be attractive benefits for the participants, we

observed that they major benefit was providing teams an accessible interface for design ideas and an ability for them

to reflect on those ideas. In our conversations with design professionals, active feedback and critique of design ideas

has been a compelling feature. The benefits derived from tool outputs can be very application specific. Generating

multi-threaded code, as in Section 3.3, may have little benefit for simple single device applications. Whereas automat-

ically understanding context and interfacing with the Context Toolkit [117] would only benefit contextual applications.

Overall, the outputs of the tool can be made arbitrarily useful depending on the target application. However, the ability

to express high-level ideas, and receive automatic feedback from those ideas, is cross-cutting and benefits a wider

variety of applications.

6.2 Future Work

Our study of electronic storyboards focused largely on tangible objects used by a single person (the smart watch

and reminder systems in the user study), however the principles of electronic storyboarding (active interpretation of

annotated sketches) can be extended to other areas. In this section we outline three new applications of electronic

storyboarding principles in fashion design, architecture, and human in the loop computing.

Fashion Design / Wearable Computing

As wearable computing becomes more prevalent and accessible, designers will seek to incorporate these technologies

into their work. A fashion exhibition has been a main feature of the International Symposium on Wearable Computing

for several years. Wearable computing presents unique wearability challenges that must balance user comfort [131]

but effective sensor placement for accurate activity recognition. Figure 6.2 show the sketches of a designer working

74

Figure 6.2: Designer sketches of a wearable computing system (courtesy of Mary Lee Carter).

through various placement locations for sensors and USB cables for connectivity. For a given application, the best

placement of sensors can be known [149]. This application-specific information, and general placement guidelines,

could be actively fed back to the designer to help them iterate more quickly through the potential design space. In

a scenario such as this tagging may not be appropriate. Given a standard mannequin outline, the color coding of

strokes (as the designer in Figure 6.2 has already done with purple for USB and grey for sensors) and the weight of

those strokes could be used to infer computational and wearability information much in the same way tags inferred the

underlying device state. The output of this process would not necessarily be code, but could be active suggestions or

links to similar wearable systems to provide inspiration and new ideas.

Interactive Architecture

Prior to conducting the research for this dissertation the author was the an instructor for an interactive architecture stu-

dio for architecture and fashion design students. One of the challenges faced by students in the course was prototyping

their projects in “real-life” scenarios. Many of the student projects were large installations that interacted with the

environment and many users. While these applications could be prototyped on the table top, they were never able to

be fully tested until installed in the final venue, which in this case was the lobby of the university architecture building.

Figure 6.3 shows an example project that reacted to the ambient noise in the building. For many of the projects, the

students could not replicate the final interactions until the project was “completed” and installed.

75

Figure 6.3: Student project from interactive architecture studio.

One possible solution for this problem could be to interpret architecture sketches to explore or simulate how in-

teractive systems would respond in a certain space. Existing approaches have created critics that analyze sketches for

architectural floorplans [150], furniture designs [151], and automatic retrieval of design plans. New approaches could

use annotations to combine architecture sketches to automatically creative a simulation environment in which the in-

teractive system can be tested. Architecture students were proficient at programming their systems using Firefly [152],

which could then be coupled to the architecture simulation to test out their ideas before installation.

Resolving Specification Ambiguity using Humans in the Loop

One of our major contributions of this work is moving from informal design artifacts (storyboards) to more formal

artifacts (source code, state charts, and textual descriptions). While this research was targeted as resolving pervasive

computing systems, our work can generalize to more arbitrary scenarios where information must be resolved between

two distinct sets of knowledge. In the remainder of this section we briefly describe a new application for distributed

product design teams.

From our recent work in the National Science Foundation I-Corps program, we have discovered that large product

design teams have difficulty communicating design changes between user experience, software engineering, and hard-

ware development teams. In large companies these teams are often distributed and frequent communication is difficult

or not well executed. For wearable, tangible, or experiential systems, changes in one aspect of the product impacts

all parties. The hardware team may not understand how removing a sensor can impact the user experience, whereas

the user experience team may not understand how demanding certain interactions are upon the hardware. While we

76

have shown on a small scale how electronic storyboards coordinate between two participants, it could be extended to

enable better coordination amongst these teams. An initial electronic storyboard could be created for the intended sce-

narios and discipline-specific changes by the parties could be queried against that scenario. By building meta-models

of hardware, software, and user-experience concerns, these constraints could be centralized at the storyboard level to

help teams interactively and iteratively understand the impact of their design changes.

Overall, our approaches can be applied where users must iteratively interrogate knowledge models. The mecha-

nisms of user-applied annotations and natural language processing can be extended into new domains. The key insight

is to keep the human in the loop to leverage their knowledge and iteratively remove ambiguity. It is not possible to cre-

ate a model with all relevant domain knowledge - the user must come in at some point. The challenge is to determine

what approaches create the most “crisp” specification that does not overly encumber the user.

6.3 Summary

Overall, the advancement of any creative discipline is related to the quality of its tools [153]. This dissertation has

sought to advance the quality of and benefits provided by pervasive computing design tools. While optimized tools can

always be created for specific domains or narrow applications, we have endeavored to create a general tool that can be

used to address applications in a variety of domains. Electronic storyboards have been shown usable by design teams

and helpful in expression design ideas and reflecting on storyboarded systems. The design space and future potential

of this work is much larger than the work conducted and leaves areas for expansive future work.

77

Appendix A

Storyboard Compilation

Figure A.1: Electronic Storyboard compilation process

This section provides detailed instructions on implementing the transformations within the electronic storyboard-

ing tool. These descriptions were omitted from the main chapter for brevity and are produced here for completeness.

Figure A.1 shows the four main stages of compilation. Section A.1 describes Layout Analysis which produces a graph

that contains the structure of the storyboard. The next stage, Global Partitioning, divides the graph into regions of sim-

ilar time and context. This process is described in Section A.2. Section A.3 describes Local Synthesis which searches

each graph from the partition and transforms it into a timed automata. Finally, each automata can be transformed

into several design artifacts, such as source code, state charts, and textual descriptions. This process was covered in

Section 3.3.4.

In this section, the structure of the storyboard is referenced as graph. We defined a graph to be G = (V,E) where

V is a set of vertices {vi, vi+1...} and where E is a set of directed edges that link vertices {(v1, v2), (v1, v3),}.

For these graphs, the vertices are the individual frames in the storyboard and the edges are the implied, conditional,

and message connectors of the storyboard. We will use the relationships between vertices and frames, and edges and

connectors interchangeably. In this way vertices may contain annotations or other information that would be expected

of frames.

78

A.1 Layout Analysis

(a) Frame geometry. (b) Storyboard layout.

Figure A.2: Model of storyboard layout

A few preliminaries before beginning this section, we assume the layout of a storyboard is a collection of frames.

Each frame is rectangular with a width and height, and has a center point in 2-D space. The collection of frames forms

the storyboard layout. We assume the upper, left-most corner of the storyboard is the coordinate (0, 0), extending out

positively in the x and y-axis. A frame block is a sequence of frames that are geometrically proximate and would be

“read” as a single group in a storyboard. The blocks would be “read” from left to right, and top to bottom as described

in Section 3.3.1. In addition to the frames, there are conditional connectors that connect frames within the same frame

block where all State annotations in the block reference the same device. Message connectors connect frames blocks

where the device referenced in the block is different.

The primary task of Layout Analysis is to transform the storyboard in a graph structure that can be more easily

interpreted by following parts of compilation. Algorithm 1 outlines how Layout Analysis is performed. Algorithms 2

and 3 provide helper functions.

79

Algorithm 1 Layout Analysis: Overview

Input: frames - set of frames {fi, fi+1, ...fn}
Input: conditionals - set of conditional connectors between frames {(fi, fj), (fj , fk)...}
Input: messages - set of message connectors between frames {(fi, fj), (fj , fk)...}
Output: graphs - a set of graphs derived from the storyboard {(Va, Ea), (Vb, Eb)....}

function LAYOUTANALYSIS(frames, conditionals, messages)
marked← ∅ . set to collect frames assigned a block
unmarked← frames . set for unassigned frames
blocks← ∅ . set of collected blocks
while |unmarked| < |frames| do . Create blocks from unmarked frames

prime← find frame closest to the upper-left corner
block← BUILDBLOCK(unmarked,prime)
if block is not ∅ ∧ prime is not ∅ then

blocks← collected ∪ block
marked← marked ∪ {∀ frames in block}
unmarked← unmarked − {∀ frames in block}

end if
end while
if ∃ a conditional connection between blocks of different devices then . Check State annotations in block

return ∅
end if
if ∃ a message connection between blocks of same devices then . Check State annotations in block

return ∅
end if
graphs← ∅
for all block in blocks do . Create a graph from each block

vertices← make each frame in block a vertex
for all frame (fi) in the block do . Create edges between adjacent frames

edges← edges ∪ (fi, fi+1) . Frames in local block are implicitly connected
end for
graphs← graphs ∪ {vertices,edges}

end for
for all graphi, graphj in graphs do . Conditional connectors were ignored in BuildBlock

if ∃ connection in the original storyboard between graphi, graphj then . Repair connected blocks
graphi ← (Vi ∪ Vj ,Ei ∪ Ej∪ {connection}) . Merge vertices and edges of graphs
graphs← graphs − graphj

end if
end for

end function

80

Algorithm 2 Layout Analysis: Building blocks from unsorted frames

Input: frames - set of frames
Input: prime - a frame
Output: block - set of geometrically connected frames

function BUILDBLOCK(frames,prime)
current← prime . current frame of interest
starter← prime . frame at the start of my row
collected← ∅ . ordered set to keep collected frames
while current is not ∅ do

collected← collected ∪ current
east← FINDNEIGHBORATDIRECTION(current, frames, EAST) . Algorithm 3
if east is ∅ then

newStarter← FINDNEIGHBORATDIRECTION(starter, frames, SOUTH)
if newStarter is ∅ then . No south frame was found, return

return collected;
else

starter← newStarter;
current← newStarter;

end if
else

current← east
end if

end while
end function

Algorithm 3 Layout Analysis: Find closest neighbor at a direction

Input: target - frame to begin finding neighbors
Input: candidates - set of frames that are candidate neighbors
Input: direction - cardinal direction in which to search
Output: neighbor - neighbor at specified direction.

function FINDNEIGHBORATDIRECTION(target,candidates,direction)
t← target
C← candidates
neighbor← ∅
maxDist← 3 ∗max(2 ∗

∑
∀c∈C

c.width
||C|| , 2 ∗

∑
∀c∈C

c.height
||C||) . Maximum distance between frames

ewLimit← 0.1 . Empirically derived parameter for Eclipse
nsLimit← 20 . Empirically derived parameter for Eclipse
if direction is EAST then

select c|∀c ∈ C, min(dist(c, t) ∧ (c.x− target.x) > 0) ∧ | c.x−t.xc.y−t.y | < ewLimit ∧ dist(c, t) < maxDist
else if direction is WEST then

select c|∀c ∈ C, min(dist(c, t) ∧ (c.x− target.x) < 0) ∧ | c.x−t.xc.y−t.y | < ewLimit ∧ dist(c, t) < maxDist
else if direction is NORTH then

select c|∀c ∈ C, min(dist(c, t) ∧ (c.y − target.y) < 0) ∧ | c.x−t.xc.y−t.y | > nsLimit ∧ dist(c, t) < maxDist
else if direction is SOUTH then

select c|∀c ∈ C, min(dist(c, t) ∧ (c.y − target.y) > 0) ∧ | c.x−t.xc.y−t.y | > nsLimit ∧ dist(c, t) < maxDist
else

c← ∅
end if
neighbor← c
return neighbor

end function

81

A.2 Global Partition

In Section A.1 we outlined how the storyboard is transformed into a series of graphs based upon frame layout and

connector information. In this section we describe how those graphs are partitioned into different regions of time and

context. Global Partitioning is initiated in Algorithm 4. The function PartitionGraph (Algorithm 5) is repeatedly called

to partition the graph into smaller graphs. Before returning, Algorithm 6 is called to heal global regions that might

have been separated.

Algorithm 4 Global Partition: Overview

Input: graphs - set of graphs generated from Layout Analysis
Output: regions - set of regions where each region contains a storyboard graph, context information, and temporal

information. (Graph, Context, Time)
function GLOBALPARTITION(graphs)

regions← ∅
for all graph in graphs do

collected← ∅
marked← ∅
newRegions← PARTITIONGRAPH(graph,null,null,collected,marked) . Algorithm 5
regions← regions ∪ newRegions

end for
healed← COMBINEEQUIVALENTREGIONS(regions) . Repair regions that might have been separated
return healed

end function

82

Algorithm 5 Global Partition: Recursively partition a graph into subgraphs of different time and context

Input: graph - storyboard graph
Input: context - current context
Input: time - current time interval
Input: collected - collected regions
Input: marked - vertices that have been visited

function PARTITIONGRAPH(graph, context, time, collected,markedNodes)
current← select vertex in graph that has no incoming edges
regionStart← current
if current ∈ markedNode then . Previously visited this node, return

return
end if
end← false . If graph ends in this recursion level
while end is false do

if current ∈ marked then . Previously visited this node, return
end← true

else
marked← marked ∪ current

end if
justAdded← false . Have we just partitioned
for all data elements in current do . Extract all the information from the frame

contextChange← true if data causes a context change, otherwise false
temporalChange← true if data cases a temporal change, otherwise false
if contextChange is true or temporalChange is true then

subgraph← subgraph of graph between regionStarter and current
collected← collected ∪ (subgraph, context, time)
justAdded← true
regionStart← current
newContext← is new context if contextChange is true, context otherwise
newTimeInterval← is new temporal interval if temporalChange is true, time otherwise

end if
end for
edges← select outbound edges from current . Determine next frame/vertex
next← ∅
if |edges| is 0 then . End of graph

collected← collected ∪ (current,context,time)
return

else if |edges| is 1 then
next← select the destination of the edge

else . There are multiple edges, recurse
if justAdded is true then

collected← (current,context,time)
end if
for all e ∈ edges do

subgraph← create subgraph from all descendants starting at target
PARTITIONGRAPH(subgraph, context, time, collected, marked) . Recursion

end for
end← true;

end if
current← next

end while
end function

83

Algorithm 6 Global Partition: Merge graphs that may have been partitioned but describe similar time and context

Input: regions - set of context time regions where each region is (Graph, Context, Time)
Output: healedRegions - set of merged regions

function COMBINEEQUIVALENTREGIONS(regions)
if |regions| is 1 then

return regions
end if
merged← ∅
newRegions← ∅
for all (ra, rb) ∈ regions do

ra = (Ga, Contexta, T imea)
rb = (Gb, Contextb, T imeb)
merged← merged ∪ra ∪ rb . mark as merged
if (Contexta, T imea) is equivalent to (Contextb, T imeb) and Gb is reachable from Ga then

if ∃rc ∈ newRegions with same context and time then
rc = (Gc, Contextc, T imec)
Gc = (Ga ∪Gb ∪Gc) . merge these two regions into the existing one

else
newRegions← newRegions ∪ {Ga ∪Gb,Contexta,Timea} . add to collected regions

end if
end if

end for
for all ∀r ∈ regions |r /∈ merged do . Put back everything that was not merged

newRegions← r ∪ merged
end for
return newRegions

end function

84

A.3 Local Synthesis

Local Synthesis takes each region (Graph, Context, Time) generated by Global Partition and converts the graph in

that region into a timed automaton. If there are multiple regions, and therefore multiple automata, each automata

is examined for temporal relationships. The only relationships current supported are before, after, and independent.

Automata with a before or after are scheduled such that one must complete before the other can begin. Automata

with independent relationships are individual threads. Algorithm 7 presents the overall Local Synthesis process.

Algorithm 8 builds an automaton from a graph, and Algorithm 9 attempts to build state transitions through interaction

with the user.

Algorithm 7 Local Synthesis: Overview

Input: regions - device regions from Global Partition
function LOCAL SYNTHESIS(regions)

synthesized← ∅
for all r ∈ regions do

graph← select the graph from r
starter← select vertex from graph with no inbound edges.
builder← ∅
edges← ∅
automaton← ∅
BUILDFROMGRAPH(region.Graph, starter, starter, builder, edges, automaton)
automaton← assign automaton Context and Time
synthesized← synthesized ∪ automaton

end for
for all (automatoni, automatonj) ∈ synthesized do

if automatoni is before automatonj then
notify compiler to set flag for automatoni completion

else if automatoni is after automatonj then
notify compiler to set flag for automatoni completion

else
notify compiler to create independent threads for automatoni and automatonj

end if
end for
Generate code and state charts for each automaton ∈ synthesized . Section 3.3.4

end function

85

Algorithm 8 Local Synthesis: transform a graph into a timed automaton

Input: graph - overall storyboard graph that is being parsed
Input: current - current vertex/frame that is being examined
Input: starter - vertex/frame that is the beginning of the current interval
Input: builder - state builder to hold annotation information
Input: marked - edges within the graph that have been followed.
Input: automaton - a timed automata of states and transitions

function BUILDFROMGRAPH(graph, current, starter, builder, edges, automaton)
while current is not ∅ do

data← extract State, Event, and Action information from current . See Section 3.3.3
builder← add extracted data to builder to see if a transition is available
newStatus← get the current status of builder
if newStatus is not ERROR and newStatus is not INCOMPLETE then . If in a buildable state

success← ATTEMPTBUILD(starter, current, builder, newStatus,automaton) . Attempt state transition
if success is true then

starter← current
newBuilder← create new State Builder
lastState← get the destination state from current
newBuilder← add lastState as the starting state
newBuilder← add data in current that was not used in the build . Add leftover data

end if
end if
edges← select outbound edges from current
if |edges| is ∅ then

postBuild← get the current status of builder
if postBuild is not ERROR and postBuild is not INCOMPLETE then

ATTEMPTBUILD(starter,current,builder,postBuild,automaton) . Clean up before exiting
end if
current← ∅

end if
if |edges| > 0 then . Multiple edges, recurse

for all e in edges where e /∈ marked do
marked← marked ∪ e
newBuilder← clone existing builder . Save builder state
if e is a conditional connection and is labeled then

newEvent← create new event from labeled connection
newBuilder← add newEvent to newBuilder

end if
destination← get destination vertex/frame from e
BUILDFROMGRAPH(graph, destination, starter, newBuilder, marked) . Recurse

end for
end if
if |edges| is 1 then

marked← marked ∪ edges
current← get destination vertex/frame from edges

end if
end while

end function

86

Algorithm 9 Local Synthesis: attempt to build a state transition

Input: begin - first vertex/frame in the graph to examine
Input: end - last vertex/frame in the graph to examine
Input: builder - state builder to hold data from storyboard
Input: status - current builder status
Input: automaton - timed automaton to add transition
Output: success - true or false based upon transition building

function ATTEMPTBUILD(begin, end, builder, status, automaton)
newTransition← ∅
switch status do

case Complete . All information is available for a transition
newTransition← (builder.initialState, builder.destinationState, builder.Event, builder.Action)

case Missing Action . Action is missing, may cascade to Multiple Events if successful
action← query user to select NLP for Action or manually specify.
newTransition← (builder.initialState, builder.destinationState, builder.Event, action)

case Missing Event . Event is missing, may cascade to Multiple Actions if successful
event← query user to select NLP for Event or manually specify
newTransition← (builder.initialState, builder.destinationState, event, builder.Action)

case Two States . Event and Action information are missing
event← query user to select from NLP or manually specify an Event
action← query user to select from NLP or manually specify action based upon event
newTransition← (builder.initialState, builder.destinationState, event, action)

case Multiple Events . Multiple events with single action available
event← query user to select an event that causes action or manually specify.
newTransition← (builder.initialState, builder.destinationState, event, builder.Action)

case Multiple Actions . Multiple actions with a single event available
action← query user to select an action that is caused by event
newTransition← (builder.initialState, builder.destinationState, builder.Event, action)

case Multiple Events and Actions . Multiple events and actions are available with two unique states
event← query user to select an event that causes the state transition
action← query user to select an action that causes event
newTransition← (builder.initialState, builder.destinationState, event, action)

case Self-Transition Available . If single Event, Action, and State are available
query← ask user if this is event causes action
if query is true then

newTransition← (builder.initialState, builder.initialState, event, action)
end if

if newTransition is not ∅ then
automaton← add newTransition to automaton
builder← remove data from builder that was used in newTransition
return true

else
return false

end if
end function

87

Appendix B

Development History of Electronic

Storyboards

B.1 Overview

In Chapter 3 we described the high-level design challenges in developing Electronic Storyboards. In this Appendix

we provide more detail about the evolution and design choices of the tool itself. Section B.2 describes the evolution of

the tool environment for electronic storyboards and describes different approaches that were attempted. Section B.3

describes various warnings and errors messages from the storyboard compiler that can be presented to the user.

B.2 Tool Environment and User Input

B.2.1 Version A: Balsamiq Mockups

The first prototype of electronic storyboards was created in Balsamiq Mockups [154]. This tool enables designers

to rapidly create mockups of user interfaces through a selection of existing media and icons. Balsamiq was used to

replicate existing storyboards from a product design class and test the underlying feasibility of our approach. An

example of one of these Balsamiq storyboards is shown in Figure B.1. Balsamiq was advantageous because each

media element in the storyboard (such as the images shown in Figure B.1) could be tagged with meta information

and the entire storyboard could be exported as an XML file. This XML file was parsed by an initial version of the

storyboard complier written in Java. This process proved out the feasibility of our approach and was used to create the

work in [89].

88

Figure B.1: Initial electronic storyboard in Balsamiq

B.2.2 Version B: Java + Swing GUI

The initial tool development in Balsamiq presented several difficulties. First, media to create the images for the

storyboard had to be imported manually by the user. If users wanted to maintain the same level of fidelity as in

Figure B.1 they were required to create the graphics beforehand, import them, and re-arrange to fit into place on

the screen. This proved time consuming and difficult. Second, Balsamiq was not consistent in the structure of the

generated XML. This made parsing the storyboard in the compiler difficult and information was frequently lost. To

address these issues a customized GUI was developing within Java Swing that would be the intended tool environment.

This approach offered freedom to create a tool that we desired but presented significant overhead. Simple actions such

as Save, Load, and Undo had to be manually implemented. This version of electronic storyboards was short-lived and

was quickly replaced by the Eclipse GEF version described in Chapter 3.

B.2.3 Version C: Eclipse Graphical Editor Framework

The current version of electronic storyboards is shown in Figure B.2 and described more fully in Chapter 3. Several

design changes were intentional to this version. First, the use of clip art and custom media as in the previous versions

was removed. While the storyboard in Figure B.1 look clean they are time consuming to create. For storyboards

of that fidelity, graphics had to be created in Illustrator (or similar tools) and then be imported into the electronic

storyboard. If graphics did not align on the screen or present well visually, they had to be edited. We attempted to

enable direct sketching of graphics in Eclipse to remedy this problem. However this ability was difficult to implement

89

Figure B.2: Current version of electronic storyboards.

Figure B.3: Icon-based storyboard in Eclipse GEF.

and no existing libraries could be found. Thus the icon approach of Figure B.3 was adopted where each icon on the

screen indicates specific tagged information relevant to the story.

This version retains the ability to import custom graphics like previous versions, however the underlying software

is much more powerful. Basic GUI actions such as Save, Load, Undo, and movement of graphics are provided for

“free”. Furthermore, the interface is integrated into Eclipse and can be directly accessed by the compiler unlike Version

A which required two separate programs. We will continue to use the icon-based approach until a suitable sketching

tool can be found. One candidate is Cog Sketch [155]. However, continued work in Eclipse GEF provides additional

abilities that are considered in the next section.

90

Figure B.4: Eclipse warning about loops in the storyboard.

Figure B.5: Message Connector Error

B.3 Errors and Warnings

One of the primary challenges in creating electronic storyboards was translating model-driven engineering concerns

to the user level. Layout analysis is the most challenging part of the storyboard compiler because of the varieties of

potential storyboard layouts. The use of connectors and different frame sizes makes deriving the proper storyboard

graphs difficult. Several methods were attempted to make it easier for the user (and consequently the compiler) to

process storyboards. First, we used the message feature of Eclipse to provide errors and warnings about critical

elements. Storyboard loops are handled by the compiler but can be problematic at times. Figure B.4 shows a warning

provided to the user to ensure that the loops detected within the storyboard are actually intended.

Another difficulty is communicating the difference between message connectors and conditional connectors in the

storyboard. Where there are multiple devices in a storyboards only message connectors can link the frames of each

device. In the example storyboard in Figure B.5, a message connector (solid arrow) is used to connect frames that

describe interactions with two different devices. A similar error message would be present if a message connector was

used to link frames that describe the same device.

Finally, electronic storyboards use a geometry-based approach to determine where sets of frames should be

grouped together. An explanation of this approach can be found in Section 3.3.1 and the exact implementation in

91

Figure B.6: Single frame block.

Figure B.7: Multiple frame blocks detected.

Section A.1. The challenge of layout analysis is to communicate to the user which frames the tool has grouped to-

gether. The algorithm may group or ungroup frames that the user did not intend. We address this approach by assigning

a color to the frames of each group while the storyboard is being created.

Figure B.6 shows a group of frames that are all colored black. Here the tool has grouped those frames together

which is indicated by their same color. Figure B.7 shows the changes when a new frame is added. Three frame blocks

are now detected. This information is important to the user as independent frame blocks are parsed as unique behaviors

within the storyboard (see Local Synthesis in Section 3.3.1). If the user intends the storyboard to be one experience

these frames should be moved around or connected with conditional connectors to indicate that relationship.

92

Appendix C

Publications and External Funding

The following publications and external funding were derived from this work:

1. Tom Martin (PI), Jason Forsyth, Christian James, “Storycoding I-Corps Team”, National Science Foundation.

Award Date: 4/1/2015. Amount: $50k.

2. Jason Forsyth, Tom Martin, “Extracting Behavioral Information from Electronic Storyboards”, Proceedings of

the 6th ACM SIGCHI Symposium on Engineering Interactive Computer Systems, Rome, Italy, June 17-20,

2014

3. Jason Forsyth, “Using Electronic Storyboards to Support Interdisciplinary Design of Pervasive Computing Sys-

tems”, Poster Presentation for the Sixth Annual Ph.D. Forum on Pervasive Computing and Communications

(PerCom), San Diego, March 20th, 2013

4. Jason Forsyth, Tom Martin, “Tools for Interdisciplinary Design of Pervasive Computing”, International Journal

of Pervasive Computing and Communications, vol. 8, no. 2, pp. 112-132, June 2012

93

Appendix D

IRB Approval

This Appendix includes the IRB approval letter authorizing the user study.

94

Office of Research Compliance
Institutational Review Board
North End Center, Suite 4120, Virginia Tech
300 Turner Street NW
Blacksburg, Virginia 24061
540/231-4606 Fax 540/231-0959
email irb@vt.edu
website http://www.irb.vt.edu

MEMORANDUM

DATE: January 29, 2014

TO: Thomas L Martin, Jason Brinkley Forsyth

FROM: Virginia Tech Institutional Review Board (FWA00000572, expires April 25, 2018)

PROTOCOL TITLE: Studying the Effectiveness of Electronic Storyboards in Rapid Prototyping

IRB NUMBER: 13-677

Effective January 28, 2014, the Virginia Tech Institution Review Board (IRB) Chair, David M Moore,
approved the Amendment request for the above-mentioned research protocol.

This approval provides permission to begin the human subject activities outlined in the IRB-approved
protocol and supporting documents.

Plans to deviate from the approved protocol and/or supporting documents must be submitted to the
IRB as an amendment request and approved by the IRB prior to the implementation of any changes,
regardless of how minor, except where necessary to eliminate apparent immediate hazards to the
subjects. Report within 5 business days to the IRB any injuries or other unanticipated or adverse
events involving risks or harms to human research subjects or others.

All investigators (listed above) are required to comply with the researcher requirements outlined at:

http://www.irb.vt.edu/pages/responsibilities.htm

(Please review responsibilities before the commencement of your research.)

PROTOCOL INFORMATION:

Approved As: Expedited, under 45 CFR 46.110 category(ies) 6,7
Protocol Approval Date: August 14, 2013
Protocol Expiration Date: August 13, 2014
Continuing Review Due Date*: July 30, 2014
*Date a Continuing Review application is due to the IRB office if human subject activities covered
under this protocol, including data analysis, are to continue beyond the Protocol Expiration Date.

FEDERALLY FUNDED RESEARCH REQUIREMENTS:

Per federal regulations, 45 CFR 46.103(f), the IRB is required to compare all federally funded grant
proposals/work statements to the IRB protocol(s) which cover the human research activities included
in the proposal / work statement before funds are released. Note that this requirement does not apply
to Exempt and Interim IRB protocols, or grants for which VT is not the primary awardee.

The table on the following page indicates whether grant proposals are related to this IRB protocol, and
which of the listed proposals, if any, have been compared to this IRB protocol, if required.

Appendix E

Copyright Statements

This Appendix contains copyright permission for content used in this dissertation. Chapter 2 contains work published

under Emerald Group Publishing. Permission is retained for use in this dissertation and future works. Chapter 3 con-

tains work published under the Association of Computing Machinery. Permission is retained for use in the dissertation

and future works. Figure 6.2 is the work of Mary Lee Carter. Permission has been obtained for use in this and future

works. Figure 2.3 is adapted from [1]. Fair use analysis for that figure is included at the end of this Appendix.

96

Home > For AuthorsLogin
Username:

Password:

Login
 OpenAthens login
 Shibboleth login
 Forgot password?

Welcome:
Guest

Product Information:

For Journals

For Books

For Case Studies

Regional information

Services

Publishing Services

Research and Publishing Pathway

Event Services

Resources:

Licensing Solutions

For Authors

Impact of Research

Writing for Emerald

Editing Service

Emerald Literati Network

Guide to Getting Published

How To Guides

Editor Interviews

Emerald and Open Access

For Librarians

For Engineers

Research Zone

Learning Zone

Teaching Zone

Multimedia Zone

 > Writing for Emerald > Emerald Author rights

Emerald Author rights
Emerald understands that what you can and can’t do with your work can be a maze for authors and different for each publishing house. The
following page is designed to clarify Emerald’s policies; however, if you still have any questions, please don’t hesitate to contact
permissions@emeraldinsight.com.

Definitions
Version of article or chapter Definition
Preprint (sometimes known as
"Version 1") The version of the work as submitted to the journal or book series (prior to the peer review process).

Postprint (sometimes known as
"Version 2")

The version of the work as accepted for publication (this may include any amendments suggested as a
result of the peer review process). This is the version that will be EarlyCited (journals only).

Version of Record (sometimes known
as "Publisher PDF" or "Version 3")

The version of the work that appears in the official Emerald publication, which includes Emerald
branding and formatting.

What are my rights as an Emerald author?
Where possible, Emerald seeks to obtain copyright for the material it publishes, without authors giving up their moral or scholarly rights to reuse
their work. Read our FAQs.

Moral rights
You retain your statutory right to be recognized and fully attributed as the author of your work. Emerald asks all authors to assert this right as a
standard clause on all our licence to publish forms. This right is protected by section(s) 77 and 78 of the UK Copyright, Designs and Patents Act
(1988).

Retained rights
As an Emerald author, you retain the rights to reuse your work for a variety of scholarly purposes. Please note that uses permitted below are
subject to full referencing and credit of original publication:

 Version
 Preprint Postprint Version of Record

Make photocopies for teaching
and classroom purposes. Unlimited Unlimited Unlimited

Make photocopies for
conferences or as handouts. Unlimited Unlimited

Up to 25 copies. If you require more
than 25 copies, please contact

permissions@emeraldinsight.com

Inclusion in your dissertation or
thesis

This version may be included in the
print version of your

thesis/dissertation. If an electronic
deposit is required, this must be the

pre or postprint version.

Reuse figures or extracts from
your article/chapter in other
works authored by you.

Reuse or republish the entirety
of your article/chapter in any
future works. Providing that you are the named author/editor of the new work, i.e. your name will appear on the front

cover of the new work.

Deposit of your article in your
institutional repository Immediately postofficial

publication. Please see below for
‘Conditions of deposit.’

Please see below for
‘Conditions of deposit.’

x

Deposit of your article on your
faculty, personal or corporate
website

Immediately postofficial
publication. Please see below for

‘Conditions of deposit.’

Please see below for
‘Conditions of deposit.’

x

Deposit of your chapter in your
institutional repository Immediately postofficial

publication.
Immediately postofficial

publication.

x

Deposit of your chapter in your
faculty, personal or corporate
website Immediately postofficial

publication
Immediately postofficial

publication

x

Sending your article/chapter via
email x x x

Inclusion of your article/chapter
on a VLE or Blackboard

If your institution has a subscription to the content in question, you
should include a URL back to the work on

www.emeraldinsight.com. This will enable Emerald to remain
COUNTERcompliant.

x

Table 1: Emerald Author reuse rights

Home | Text View | Contact Us | Site Map | Support | Emerald Profile

Site search: enter search term Go

The original Owner/Author permanently holds these rights:

All other proprietary rights not granted to ACM, including patent or trademark rights.
Reuse of any portion of the Work, without fee, in any future works written or edited by the
Author**, including books, lectures and presentations in any and all media.
Create a "Major Revision" which is not subject to any rights in the original that have been
granted to ACM
Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's
institutional repository, or (3) any repository legally mandated by an agency funding the
research on which the Work is based.
Post an "AuthorIzer" link enabling free downloads of the Version of Record in the ACM Digital
Library on (1) the Author's home page or (2) the Owner's institutional repository;
Prior to commencement of the ACM peer review process, post the version of the Work as
submitted to ACM ("Submitted Version") to nonpeer reviewed servers;
Make distributions of the final published Version of Record internally to the Owner's employees,
if applicable;
Bundle the Work in any of Owner's software distributions; and
Use any Auxiliary Material independent from the Work.

Additionally, authors who choose the ACM Publishing License Agreement, hold all other rights not
granted to ACM in the License including the ownership of the copyright of the work.

Authors or their employers may retain copyright to embedded images (e.g., figures) with independent
artistic value. Authors must grant permission for ACM to use the image in the context of the article in
current and future formats. Such images must be declared at the time of article copyright transfer or
grant of license, and declaration of copyright must be included within the image or the caption.

Reuse of thirdparty material contained in ACM published works always requires the consent of the
copyright holder, as ACM's copyright or license does not cover thirdparty material.

In connection with any use by the Owner of the Definitive Version of Record, Owner should include
the ACM citation and ACM Digital Object Identifier.

In connection with any use by the Owner of the Submitted Version (if accepted) or the Accepted
Version or a Minor Revision, Owner shall use best efforts to display the ACM citation, along with a
statement substantially similar to the following:

"© {Owner/Author | ACM} {Year}. This is the author's version of the work. It is posted
here for your personal use. Not for redistribution. The definitive Version of Record was

published in {Source Publication}, http://dx.doi.org/10.1145/{number}."

**Requests made on behalf of others, i.e., for contributions to the work of other authors or other
editors, may require payment of the fee.

2.6 Fixity of Works

ACM does not alter works once published. There are times, however, when it is appropriate to publish a
revised or corrected version of a work; doing so requires the approval of the responsible editor.

Subject: Re: e-textiles sketches
From: Mary Lee Carter <marylee9@vt.edu>
Date: 03/27/2015 03:39 PM
To: Jason Forsyth <jforsyth@vt.edu>

I accept this agreement!

Mary Lee Carter
March 27 2015

On Mar 27, 2015, at 12:09 AM, Jason Forsyth wrote:

Mary Lee,

During the summer you created some sketches of wearable systems that I would like to
use in future works. I have mentioned this to you previously but I would like to
formalize this agreement so I don't have to ask you every time. I've attached an
agreement that provides myself permission to use these sketches in future work. Most
notably in my upcoming dissertation.

Your agreement or disagreement on this matter will have no impact on any role,
position, or anything otherwise. I appreciate your work and feel it could be very
helpful in the future.

If this is acceptable to you could you: (1) print out the first page, (2) scan it, and
(3) email it back to me?

Thanks,

Jason
<ML Scans Agreement.pdf>

Mary Lee Carter

Virginia Tech Industrial Design
Coroflot.com/MaryLeeC/portfolio

Alpha Rho Chi, Metagenes
Kappa Kappa Gamma, Zeta Mu
VT Sport Clubs, Supervisor
Hokie Ambassadors

Re: e-textiles sketches imap://imap.gmail.com:993/fetch>UID>/INBOX/...

1 of 1 04/16/2015 06:25 PM

5/20/2015 VT Fair Use Analysis Results

http://etd.vt.edu/fairuse/analyzer/results.php 1/2

Draft 09/01/2009

(Questions? Concerns? Contact Gail McMillan, Director of the Digital Library and Archives at Virginia Tech's
University Libraries: gailmac@vt.edu)

(Please ensure that Javascript is enabled on your browser before using this tool.)

Virginia Tech ETD Fair Use Analysis Results

This is not a replacement for professional legal advice but an effort to assist you in
making a sound decision.

Name: Jason Forsyth

Description of item under review for fair use: Figure 24 in Sketching the User Experience: Getting the Design Right
and the Right Design, Bill Buxton, Morgan Kaufmann, cited as Figure 2.3 in my work.

Report generated on: 05202015 at : 10:55:41

Based on the information you provided:

Factor 1

Your consideration of the purpose and character of your use of the copyright
work weighs: in favor of fair use

Factor 2

Your consideration of the nature of the copyrighted work you used weighs: in
favor of fair use

Factor 3

Your consideration of the amount and substantiality of your use of the
copyrighted work weighs: in favor of fair use

Factor 4

Your consideration of the effect or potential effect on the market after your use of
the copyrighted work weighs: in favor of fair use

Based on the information you provided, your use of the copyrighted work weighs: in
favor of fair use

Appendix F

Bibliography

[1] B. Buxton, Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kaufmann,

2007.

[2] M. Weiser, “Some computer science issues in ubiquitous computing,” Communications of the ACM, vol. 36,

pp. 75–84, July 1993. [Online]. Available: http://doi.acm.org/10.1145/159544.159617

[3] T. Martin, K. Kim, J. Forsyth, L. McNair, E. Coupey, and E. Dorsa, “Discipline-based instruction to promote

interdisciplinary design of wearable and pervasive computing products,” Personal and Ubiquitous Computing,

pp. 1–14, December 2011.

[4] E. Y.-L. Do and M. D. Gross, “Environments for creativity: a lab for making things,” in Proceedings of the 6th

ACM SIGCHI conference on Creativity & cognition. New York, NY, USA: ACM, 2007, pp. 27–36.

[5] B. Moggridge, Designing Interactions. MIT Press, 2007.

[6] S. Dow, T. S. Saponas, Y. Li, and J. A. Landay, “External representations in ubiquitous computing design and

the implications for design tools,” in Proceedings of the 6th conference on Designing Interactive Systems, June

2006, pp. 241–250.

[7] M. Haensen, “User-centered process framework and techniques to support the realization of interactive systems

by multi-disciplinary teams,” Ph.D. dissertation, Universiteit Hasselt, 2011.

[8] C. Van der Lelie, “The value of storyboards in the product design process,” Personal and Ubiquitous Computing,

vol. 10, no. 2-3, pp. 159–162, 2006.

101

http://doi.acm.org/10.1145/159544.159617

[9] E. Welbourne, M. Balazinska, G. Borriello, and J. Fogarty, “Specification and verification of complex location

events with panoramic,” in Pervasive Computing, ser. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2010, vol. 6030, pp. 57–75.

[10] M. Shin, B. soo Kim, and J. Park, “Ar storyboard: An augmented reality based interactive storyboard authoring

tool,” IEEE / ACM International Symposium on Mixed and Augmented Reality, vol. 0, pp. 198–199, 2005.

[11] B. P. Bailey, J. A. Konstan, and J. V. Carlis, “DEMAIS: designing multimedia applications with interactive

storyboards,” in Proceedings of the ninth ACM international conference on Multimedia. New York, NY, USA:

ACM, 2001, pp. 241–250.

[12] D. Pizzi, J. Lugrin, A. Whittaker, and M. Cavazza, “Automatic generation of game level solutions as story-

boards,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 2, no. 3, pp. 149 –161, sept.

2010.

[13] D. A. Schon and G. Wiggins, “Kinds of seeing and their functions in designing,” Design Studies, vol. 13, no. 2,

pp. 135 – 156, 1992.

[14] Eclipse Graphical Editor Framework, http://www.eclipse.org/gef/.

[15] G. D. Abowd, “What next, ubicomp?: celebrating an intellectual disappearing act,” in Proceedings of the 2012

ACM Conference on Ubiquitous Computing. ACM, 2012, pp. 31–40.

[16] M. Weiser, “Designing calm technology,” http://www.ubiq.com/hypertext/weiser/calmtech/calmtech.htm, 1995.

[17] Y. Liu, J. Goncalves, D. Ferreira, S. Hosio, and V. Kostakos, “Identity crisis of ubicomp?: mapping 15 years of

the field’s development and paradigm change,” in Proceedings of the 2014 ACM International Joint Conference

on Pervasive and Ubiquitous Computing. ACM, 2014, pp. 75–86.

[18] M. Famelis, R. Salay, A. Di Sandro, and M. Chechik, “Transformation of models containing uncertainty,” in

Model-Driven Engineering Languages and Systems. Springer, 2013, pp. 673–689.

[19] J. Forsyth and T. Martin, “Tools for interdisciplinary design of pervasive computing,” International Journal of

Pervasive Computing and Communications, vol. 8, pp. 112 – 132, June 2012.

[20] M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265, pp. 19–26, September 1991.

[21] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE Personal Communications, vol. 8,

no. 4, pp. 10 –17, aug. 2001.

[22] M. Weiser, “The world is not a desktop,” Interactions, vol. 1, no. 1, pp. 7–8, Jan. 1994.

102

[23] N. Davies and H.-W. Gellersen, “Beyond prototypes: challenges in deploying ubiquitous systems,” IEEE Per-

vasive Computing, vol. 1, no. 1, pp. 26 – 35, Jan-Mar 2002.

[24] M. Ashby and K. Johnson, Materials and Design - The Art and Science of Material Selection in Product Design,

2nd ed. Butterworth-Heinemann, 2010.

[25] D. A. Schon, “Designing as reflective conversation with the materials of a design situation,” Research in Engi-

neering Design, vol. 3, no. 3, pp. 131–147, 1992.

[26] D. Schon, The Reflective Practitioner: How Professionals Think In Action. Basic Books, 1984.

[27] G. Fischer, K. Nakakoji, J. Ostwald, G. Stahl, and T. Sumner, “Embedding critics in design environments,” The

knowledge engineering review, vol. 8, no. 04, pp. 285–307, 1993.

[28] E. S. Poole, C. A. Le Dantec, J. R. Eagan, and W. K. Edwards, “Reflecting on the invisible:

understanding end-user perceptions of ubiquitous computing,” in Proceedings of the 10th international

conference on Ubiquitous computing. New York, NY, USA: ACM, 2008, pp. 192–201. [Online]. Available:

http://doi.acm.org/10.1145/1409635.1409662

[29] T. Martin, K. Kim, J. Forsyth, L. McNair, E. Coupey, and E. Dorsa, “An interdisciplinary undergraduate design

course for wearable and pervasive computing products,” in 15th Annual IEEE International Symposium on

Wearable Computers (ISWC), June 2011, pp. 61 – 68.

[30] N. Cross, Designerly ways of knowing. Springer, 2006.

[31] B. R. Lawson, “Cognitive strategies in architectural design,” Ergonomics, vol. 22, no. 1, pp. 59–68, 1979.

[32] S. P. Dow, K. Heddleston, and S. R. Klemmer, “The efficacy of prototyping under time constraints,” in Pro-

ceedings of the Seventh ACM Conference on Creativity and Cognition, 2009, pp. 165–174.

[33] M. Buchenau and J. F. Suri, “Experience prototyping,” in Proceedings of the 3rd conference on Designing

interactive systems: processes, practices, methods, and techniques. New York, NY, USA: ACM, 2000, pp.

424–433.

[34] “Processing.” [Online]. Available: http://www.processing.org/

[35] Arduino, www.arduino.cc.

[36] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla, B. Burr, A. Robinson-Mosher, and J. Gee, “Reflective

physical prototyping through integrated design, test, and analysis,” in Proceedings of the 19th annual ACM

symposium on User interface software and technology, 2006, pp. 299–308.

103

http://doi.acm.org/10.1145/1409635.1409662
http://www.processing.org/

[37] Obrenovic, Željko and Martens, Jean-Bernard, “Sketching interactive systems with sketchify,” ACM Trans.

Comput.-Hum. Interact., vol. 18, pp. 4:1–4:38, May 2011. [Online]. Available: http://doi.acm.org/10.1145/

1959022.1959026

[38] Y. Li and J. A. Landay, “Activity-based prototyping of ubicomp applications for long-lived, everyday human

activities,” in Proceedings of the SIGCHI conference on Human factors in computing systems, April 2008, pp.

1303–1312.

[39] Y. Li, J. I. Hong, and J. A. Landay, “Topiary: a tool for prototyping location-enhanced applications,” in

Proceedings of the 17th annual ACM symposium on User interface software and technology. New York, NY,

USA: ACM, 2004, pp. 217–226. [Online]. Available: http://doi.acm.org/10.1145/1029632.1029671

[40] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay, “Papier-mache: toolkit support for tangible input,” in Proceedings

of the SIGCHI conference on Human factors in computing systems. New York, NY, USA: ACM, 2004, pp.

399–406.

[41] R. Hague, P. Robinson, and A. Blackwell, “Towards ubiquitous end-user programming,” in Proceedings of

Ubicomp 2003, 2003.

[42] R. van Herk, J. Verhaegh, and W. F. Fontijn, “Espranto sdk: an adaptive programming environment for tangible

applications,” in Proceedings of the 27th international conference on Human factors in computing systems.

New York, NY, USA: ACM, 2009, pp. 849–858.

[43] G. Ngai, S. C. Chan, V. T. Ng, J. C. Cheung, S. S. Choy, W. W. Lau, and J. T. Tse, “i*catch: a scalable

plug-n-play wearable computing framework for novices and children,” in Proceedings of the 28th international

conference on Human factors in computing systems. New York, NY, USA: ACM, 2010, pp. 443–452.

[Online]. Available: http://doi.acm.org/10.1145/1753326.1753393

[44] A. Warth, T. Yamamiya, Y. Ohshima, and S. Wallace, “Toward a more scalable end-user scripting language,” in

Creating, Connecting and Collaborating through Computing, 2008. C5 2008. Sixth International Conference

on, jan. 2008, pp. 172 –178.

[45] E. Baafi and A. Millner, “A toolkit for tinkering with tangibles and connecting communities,” in Proceedings

of the fifth international conference on Tangible, embedded, and embodied interaction. New York, NY, USA:

ACM, 2011, pp. 349–352.

[46] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, “a cappella: programming by demonstration of

context-aware applications,” in Proceedings of the SIGCHI conference on Human factors in computing systems.

New York, NY, USA: ACM, 2004, pp. 33–40. [Online]. Available: http://doi.acm.org/10.1145/985692.985697

104

http://doi.acm.org/10.1145/1959022.1959026
http://doi.acm.org/10.1145/1959022.1959026
http://doi.acm.org/10.1145/1029632.1029671
http://doi.acm.org/10.1145/1753326.1753393
http://doi.acm.org/10.1145/985692.985697

[47] A. Parkes and H. Ishii, “Bosu: a physical programmable design tool for transformability with soft mechanics,”

in Proceedings of the 8th ACM Conference on Designing Interactive Systems. New York, NY, USA: ACM,

2010, pp. 189–198. [Online]. Available: http://doi.acm.org/10.1145/1858171.1858205

[48] K. Truong, E. Huang, and G. Abowd, “Camp: A magnetic poetry interface for end-user programming of capture

applications for the home,” in Proceedings of Ubicomp 2004, 2004, pp. 143–160.

[49] M. H. Vastenburg, H. Fjalldal, and C. van der Mast, “Ubi-designer: a web-based toolkit for configuring

and field-testing ubicomp prototypes,” in Proceedings of the 2nd International Conference on PErvasive

Technologies Related to Assistive Environments. New York, NY, USA: ACM, 2009, pp. 32:1–32:6. [Online].

Available: http://doi.acm.org/10.1145/1579114.1579146

[50] A. Dey, T. Sohn, S. Streng, and J. Kodama, “icap: Interactive prototyping of context-aware applications,” in

Pervasive Computing. Springer Berlin / Heidelberg, 2006, vol. 3968, pp. 254–271.

[51] K. Lyons, H. Brashear, T. Westeyn, J. S. Kim, and T. Starner, “Gart: the gesture and activity recognition

toolkit,” in Proceedings of the 12th international conference on Human-computer interaction: intelligent

multimodal interaction environments. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 718–727. [Online].

Available: http://dl.acm.org/citation.cfm?id=1769590.1769671

[52] D. Bannach, P. Lukowicz, and O. Amft, “Rapid prototyping of activity recognition applications,” Pervasive

Computing, IEEE, vol. 7, no. 2, pp. 22 –31, april-june 2008.

[53] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A. Brandle, “Rapid prototyping for pervasive applications,” IEEE

Pervasive Computing, vol. 6, no. 2, pp. 76 –84, april-june 2007.

[54] S. Greenberg and C. Fitchett, “Phidgets: easy development of physical interfaces through physical widgets,” in

Proceedings of the 14th annual ACM symposium on User interface software and technology. New York, NY,

USA: ACM, 2001, pp. 209–218.

[55] S. Tokuhisa, T. Ishizawa, Y. Niwa, K. Kasuya, A. Ueki, S. Hashimoto, K. Koriyama, and M. Inakage, “xtel:

a development environment to support rapid prototyping of ”ubiquitous content”,” in Proceedings of the 3rd

International Conference on Tangible and Embedded Interaction. New York, NY, USA: ACM, 2009, pp.

323–330.

[56] R. Ballagas, M. Ringel, M. Stone, and J. Borchers, “istuff: a physical user interface toolkit for ubiquitous

computing environments,” in CHI ’03: Proceedings of the SIGCHI conference on Human factors in computing

systems. New York, NY, USA: ACM, 2003, pp. 537–544.

105

http://doi.acm.org/10.1145/1858171.1858205
http://doi.acm.org/10.1145/1579114.1579146
http://dl.acm.org/citation.cfm?id=1769590.1769671

[57] T. Matthews, A. K. Dey, J. Mankoff, S. Carter, and T. Rattenbury, “A toolkit for managing user

attention in peripheral displays,” in Proceedings of the 17th annual ACM symposium on User interface

software and technology. New York, NY, USA: ACM, 2004, pp. 247–256. [Online]. Available:

http://doi.acm.org/10.1145/1029632.1029676

[58] P. Sundström, A. Taylor, K. Grufberg, N. Wirström, J. Solsona Belenguer, and M. Lundén, “Inspirational bits:

towards a shared understanding of the digital material,” in Proceedings of the 2011 annual conference on

Human factors in computing systems. New York, NY, USA: ACM, 2011, pp. 1561–1570. [Online]. Available:

http://doi.acm.org/10.1145/1978942.1979170

[59] J. J. Barton and V. Vijayaraghavan, “Ubiwise, a ubiquitous wireless infrastructure simulation environment,”

HP Technical Reports, 2002. [Online]. Available: http://home.comcast.net/∼johnjbarton/ubicomp/ur/ubiwise/

publications/ubiwise-05MAY02.pdf

[60] W. Jouve, J. Bruneau, and C. Consel, “Diasim: A parameterized simulator for pervasive computing applica-

tions,” in Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on,

9-13 2009, pp. 1 –3.

[61] E. O’Neill, M. Klepal, D. Lewis, T. O’Donnell, D. O’Sullivan, and D. Pesch, “A testbed for evaluating human

interaction with ubiquitous computing environments,” in TRIDENTCOM ’05: Proceedings of the First Interna-

tional Conference on Testbeds and Research Infrastructures for the DEvelopment of NeTworks and COMmuni-

ties. Washington, DC, USA: IEEE Computer Society, 2005, pp. 60–69.

[62] J. C. Lee, D. Avrahami, S. E. Hudson, J. Forlizzi, P. H. Dietz, and D. Leigh, “The calder toolkit: wired and wire-

less components for rapidly prototyping interactive devices,” in roceedings of the 5th conference on Designing

interactive systems. New York, NY, USA: ACM, 2004, pp. 167–175.

[63] L. Buechley, M. Eisenberg, J. Catchen, and A. Crockett, “The lilypad arduino: using computational textiles

to investigate engagement, aesthetics, and diversity in computer science education,” in Proceeding of the

twenty-sixth annual SIGCHI conference on Human factors in computing systems. New York, NY, USA:

ACM, 2008, pp. 423–432. [Online]. Available: http://doi.acm.org/10.1145/1357054.1357123

[64] B. Hartmann, “Ex-a-sketch: Wizard of oz sketch animation for experience prototyping,”

http://hci.stanford.edu/research/ex-a-sketch/.

[65] Modkit, http://www.modk.it/.

106

http://doi.acm.org/10.1145/1029632.1029676
http://doi.acm.org/10.1145/1978942.1979170
http://home.comcast.net/~johnjbarton/ubicomp/ur/ubiwise/publications/ubiwise-05MAY02.pdf
http://home.comcast.net/~johnjbarton/ubicomp/ur/ubiwise/publications/ubiwise-05MAY02.pdf
http://doi.acm.org/10.1145/1357054.1357123

[66] T. S. McNerney, “From turtles to tangible programming bricks: explorations in physical language design,”

Personal and Ubiquitous Computing, vol. 8, pp. 326–337, 2004, 10.1007/s00779-004-0295-6. [Online].

Available: http://dx.doi.org/10.1007/s00779-004-0295-6

[67] M. S. Horn and R. J. K. Jacob, “Designing tangible programming languages for classroom use,” in Proceedings

of the 1st international conference on Tangible and embedded interaction. New York, NY, USA: ACM, 2007,

pp. 159–162. [Online]. Available: http://doi.acm.org/10.1145/1226969.1227003

[68] L. Buechley and M. Eisenberg, “Boda blocks: a collaborative tool for exploring tangible three-dimensional

cellular automata,” in Proceedings of the 8th iternational conference on Computer supported collaborative

learning. International Society of the Learning Sciences, 2007, pp. 102–104. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1599600.1599618

[69] B. Myers, S. Park, Y. Nakano, G. Mueller, and A. Ko, “How designers design and program interactive behav-

iors,” in IEEE Symposium on Visual Languages and Human-Centric Computing, sept. 2008, pp. 177 –184.

[70] S. Amershi, J. Fogarty, A. Kapoor, and D. Tan, “Overview based example selection in end user interactive con-

cept learning,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology.

ACM, 2009, pp. 247–256.

[71] R. Fiebrink, P. R. Cook, and D. Trueman, “Human model evaluation in interactive supervised learning,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2011, pp. 147–156.

[72] S. Amershi, J. Fogarty, A. Kapoor, and D. S. Tan, “Effective end-user interaction with machine learning.” in

AAAI, 2011.

[73] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay, “Gestalt: integrated support for

implementation and analysis in machine learning,” in Proceedings of the 23nd annual ACM symposium on User

interface software and technology. ACM, 2010, pp. 37–46.

[74] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: aiding the development of context-enabled

applications,” in CHI ’99: Proceedings of the SIGCHI conference on Human factors in computing systems.

New York, NY, USA: ACM, 1999, pp. 434–441.

[75] “Android sdk.” [Online]. Available: http://developer.android.com/sdk/index.html

[76] “Adobe device central.” [Online]. Available: http://www.adobe.com/products/creativesuite/devicecentral/

features/

107

http://dx.doi.org/10.1007/s00779-004-0295-6
http://doi.acm.org/10.1145/1226969.1227003
http://dl.acm.org/citation.cfm?id=1599600.1599618
http://developer.android.com/sdk/index.html
http://www.adobe.com/products/creativesuite/devicecentral/features/
http://www.adobe.com/products/creativesuite/devicecentral/features/

[77] Y. Nakanishi, K. Sekiguchi, T. Ohmori, S. kitahara, and D. Akatsuka, “Hybrid prototyping by using virtual and

miniature simulation for designing spatial interactive information systems,” in Pervasive Computing, K. Lyons,

J. Hightower, and E. Huang, Eds. Springer Berlin / Heidelberg, 2011, vol. 6696, pp. 250–257.

[78] J. Park, M. Moon, S. Hwang, and K. Yeom, “Cass: A context-aware simulation system for smart home,”

Software Engineering Research, Management and Applications, ACIS International Conference on, vol. 0, pp.

461–467, 2007.

[79] H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki, T. Kitani, N. Shibata, K. Yasumoto, and M. Ito, “Ubireal:

Realistic smartspace simulator for systematic testing,” in UbiComp 2006: Ubiquitous Computing, P. Dourish

and A. Friday, Eds. Springer Berlin / Heidelberg, 2006, vol. 4206, pp. 459–476.

[80] R. Morla and N. Davies, “Evaluating a location-based application: a hybrid test and simulation environment,”

Pervasive Computing, IEEE, vol. 3, no. 3, pp. 48 – 56, july-sept. 2004.

[81] S. Dow, B. MacIntyre, J. Lee, C. Oezbek, J. Bolter, and M. Gandy, “Wizard of oz support throughout an iterative

design process,” Pervasive Computing, IEEE, vol. 4, no. 4, pp. 18 – 26, oct.-dec. 2005.

[82] I. Culverhouse and S. Gill, “Bringing concepts to life: introducing a rapid interactive sketch modelling

toolkit for industrial designers,” in Proceedings of the 3rd International Conference on Tangible

and Embedded Interaction. New York, NY, USA: ACM, 2009, pp. 363–366. [Online]. Available:

http://doi.acm.org/10.1145/1517664.1517737

[83] R. C. Davis, T. S. Saponas, M. Shilman, and J. A. Landay, “Sketchwizard: Wizard of oz prototyping

of pen-based user interfaces,” in Proceedings of the 20th annual ACM symposium on User interface

software and technology. New York, NY, USA: ACM, 2007, pp. 119–128. [Online]. Available:

http://doi.acm.org/10.1145/1294211.1294233

[84] T.-J. Nam, “Sketch-based rapid prototyping platform for hardware-software integrated interactive products,” in

CHI ’05 extended abstracts on Human factors in computing systems. New York, NY, USA: ACM, 2005, pp.

1689–1692. [Online]. Available: http://doi.acm.org/10.1145/1056808.1056998

[85] B. Hartmann, S. Follmer, A. Ricciardi, T. Cardenas, and S. R. Klemmer, “d.note: revising user interfaces

through change tracking, annotations, and alternatives,” in Proceedings of the 28th international conference on

Human factors in computing systems. New York, NY, USA: ACM, 2010, pp. 493–502. [Online]. Available:

http://doi.acm.org/10.1145/1753326.1753400

108

http://doi.acm.org/10.1145/1517664.1517737
http://doi.acm.org/10.1145/1294211.1294233
http://doi.acm.org/10.1145/1056808.1056998
http://doi.acm.org/10.1145/1753326.1753400

[86] G. Johnson, M. D. Gross, J. Hong, and E. Yi-Luen Do, “Computational support for sketching in design:

A review,” Found. Trends Hum.-Comput. Interact., vol. 2, pp. 1–93, January 2009. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1576251.1576252

[87] Scratch for Arduino, http://seaside.citilab.eu/scratch/arduino. [Online]. Available: http://seaside.citilab.eu/

scratch/arduino

[88] K. Reader, “Using storyboard techniques to identify design opportunities,” The Technology Teacher, April 2005.

[89] J. Forsyth and T. Martin, “Extracting behavioral information from electronic storyboards,” in Proceedings of

the 2014 ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 2014, pp. 253–262.

[90] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engineering in practice,” Synthesis Lectures

on Software Engineering, vol. 1, no. 1, pp. 1–182, 2012.

[91] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An annotated bibliography.” Sigplan

Notices, vol. 35, no. 6, pp. 26–36, 2000.

[92] J.-P. Tolvanen and S. Kelly, “Defining domain-specific modeling languages to automate product derivation:

Collected experiences,” in Software Product Lines. Springer, 2005, pp. 198–209.

[93] F. Hermans, M. Pinzger, and A. Van Deursen, “Domain-specific languages in practice: A user study on the

success factors,” in Model driven engineering languages and systems. Springer, 2009, pp. 423–437.

[94] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-driven engineering,” Software,

IEEE, vol. 31, no. 3, pp. 79–85, 2014.

[95] G. Simko, D. Lindecker, T. Levendovszky, S. Neema, and J. Sztipanovits, “Specification of cyber-physical

components with formal semantics–integration and composition,” in Model-Driven Engineering Languages

and Systems. Springer, 2013, pp. 471–487.

[96] A. Gill, “Domain-specific languages and code synthesis using haskell,” Queue, vol. 12, no. 4, p. 30, 2014.

[97] MetaCase, “Metaedit+ modeler,” http://www.metacase.com/mep/.

[98] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel, “Design guidelines for domain

specific languages,” arXiv preprint arXiv:1409.2378, 2014.

[99] O. M. Group, “Object constraint language 2.4,” http://www.omg.org/spec/OCL/2.4/.

109

http://dl.acm.org/citation.cfm?id=1576251.1576252
http://seaside.citilab.eu/scratch/arduino
http://seaside.citilab.eu/scratch/arduino
http://www.metacase.com/mep/
http://www.omg.org/spec/OCL/2.4/

[100] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. Polack, and G. Botterweck, “Taming emf and gmf

using model transformation,” in Model Driven Engineering Languages and Systems. Springer, 2010, pp.

211–225.

[101] D. S. Kolovos, L. M. Rose, R. F. Paige, and F. A. Polack, “Raising the level of abstraction in the development

of gmf-based graphical model editors,” in Proceedings of the 2009 ICSE Workshop on Modeling in Software

Engineering. IEEE Computer Society, 2009, pp. 13–19.

[102] “Cocovila,” https://github.com/CoCoViLa/CoCoViLa.

[103] H. Cho, J. Gray, and E. Syriani, “Creating visual domain-specific modeling languages from end-user demon-

stration,” in Proceedings of the 4th International Workshop on Modeling in Software Engineering. IEEE Press,

2012, pp. 22–28.

[104] L. Wouters, “Towards the notation-driven development of dsmls,” in Model-Driven Engineering Languages and

Systems. Springer, 2013, pp. 522–537.

[105] J. C. Grundy, J. Hosking, K. N. Li, N. M. Ali, J. Huh, and R. L. Li, “Generating domain-specific visual language

tools from abstract visual specifications,” Software Engineering, IEEE Transactions on, vol. 39, no. 4, pp. 487–

515, 2013.

[106] D. Schmidt, “Guest editor’s introduction: Model-driven engineering,” IEEE Computer, vol. 39, no. 2, pp. 25–

31, 2006.

[107] A. G.-D. Dimitris Kolovos, Louis Rose and R. Paige, “The epsilon book,” https://eclipse.org/epsilon/doc/book/,

2015.

[108] M. Famelis, S. Ben-David, M. Chechik, and R. Salay, “Partial models: A position paper,” in Proceedings of the

8th International Workshop on Model-Driven Engineering, Verification and Validation. ACM, 2011, p. 1.

[109] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing

(almost) from scratch,” Journal of Machine Learning Research, vol. 12, pp. 2493–2537, Nov. 2011.

[110] B. Buxton, “Remarks by bill buxton at mix09,” http://news.microsoft.com/speeches/bill-buxton-mix09, 2009.

[111] C. Cassandras, Introduction to Discrete Event Systems. Springer, 2007.

[112] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky, “Toward patient safety in closed-

loop medical device systems,” in Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical

Systems, New York, NY, USA, 2010, pp. 139–148.

110

https://github.com/CoCoViLa/CoCoViLa
https://eclipse.org/epsilon/doc/book/
http://news.microsoft.com/speeches/bill-buxton-mix09

[113] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun. ACM, vol. 26, no. 11, pp. 832–843,

Nov. 1983. [Online]. Available: http://doi.acm.org/10.1145/182.358434

[114] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime, “Uppaal-tiga: Time for playing

games!” in Computer Aided Verification, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2007, vol. 4590, pp. 121–125.

[115] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times: A tool for schedulability analysis and

code generation of real-time systems,” in Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes

in Computer Science, K. Larsen and P. Niebert, Eds. Springer Berlin Heidelberg, 2004, vol. 2791, pp. 60–72.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-40903-8 6

[116] Llus Mrquez and Xavier Carreras and Kenneth Litkowski and Suzanne Stevenson, “Semantic role labeling: An

introduction to the special issue,” Computational Linguistics, vol. 34, June 2008.

[117] B. Y. Lim and A. K. Dey, “Toolkit to support intelligibility in context-aware applications,” in Proceedings of

the 12th ACM international conference on Ubiquitous computing. New York, NY, USA: ACM, 2010, pp.

13–22. [Online]. Available: http://doi.acm.org/10.1145/1864349.1864353

[118] “Acceleo model to text,” http://www.eclipse.org/acceleo/, 2014.

[119] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: simplifying event-driven programming of

memory-constrained embedded systems,” in Proceedings of the 4th international conference on Embedded

networked sensor systems, 2006, pp. 29–42.

[120] “Opensound control,” http://opensoundcontrol.org/, 2014.

[121] PlantUML, http://plantuml.sourceforge.net/, 2015.

[122] Arduino, www.arduino.cc.

[123] S. L. Star and J. R. Griesemer, “Institutional ecology,translations’ and boundary objects: Amateurs and pro-

fessionals in berkeley’s museum of vertebrate zoology, 1907-39,” Social studies of science, vol. 19, no. 3, pp.

387–420, 1989.

[124] X. Zhou, M. Ackerman, and K. Zheng, “Cpoe workarounds, boundary objects, and assemblages,” in Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2011, pp. 3353–3362.

[125] W. G. Lutters and M. S. Ackerman, “Beyond boundary objects: collaborative reuse in aircraft technical support,”

Computer Supported Cooperative Work (CSCW), vol. 16, no. 3, pp. 341–372, 2007.

111

http://doi.acm.org/10.1145/182.358434
http://dx.doi.org/10.1007/978-3-540-40903-8_6
http://doi.acm.org/10.1145/1864349.1864353
http://www.eclipse.org/acceleo/
http://opensoundcontrol.org/
http://plantuml.sourceforge.net/

[126] M. Bohøj, N. G. Borchorst, N. O. Bouvin, S. Bødker, and P.-O. Zander, “Timeline collaboration,” in Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2010, pp. 523–532.

[127] C. Lee, “Boundary negotiating artifacts: Unbinding the routine of boundary objects and embracing chaos in

collaborative work,” Computer Supported Cooperative Work, vol. 16, no. 3, pp. 307–339, 2007. [Online].

Available: http://dx.doi.org/10.1007/s10606-007-9044-5

[128] M. K. Halpern, I. Erickson, L. Forlano, and G. K. Gay, “Designing collaboration: Comparing cases exploring

cultural probes as boundary-negotiating objects,” in Proceedings of the 2013 Conference on Computer Sup-

ported Cooperative Work, 2013, pp. 1093–1102.

[129] P. Dalsgaard, K. Halskov, and D. A. Basballe, “Emergent boundary objects and boundary zones in collaborative

design research projects,” in Proceedings of the 2014 conference on Designing interactive systems. ACM,

2014, pp. 745–754.

[130] M. K. Halpern, “Across the great divide: Boundaries and boundary objects in art and science,” Public Under-

standing of Science, p. 0963662510394040, 2011.

[131] F. Gemperle, C. Kasabach, J. Stivoric, M. Bauer, and R. Martin, “Design for wearability,” in Wearable Comput-

ers, 1998. Digest of Papers. Second International Symposium on. IEEE, 1998, pp. 116–122.

[132] S. L. Star, “This is not a boundary object: Reflections on the origin of a concept,” Science, Technology & Human

Values, vol. 35, no. 5, pp. 601–617, 2010.

[133] A. Fong, R. Valerdi, and J. Srinivasan, “Boundary objects as a framework to understand the role of systems

integrators,” in Systems Research Forum, vol. 2, no. 01. World Scientific, 2007, pp. 11–18.

[134] P. Carlile, “A pragmatic view of knowledge and boundaries: Boundary objects in new product development,”

Organizational Science, vol. 13, no. 4, pp. 442–455, July - August 2002.

[135] D. Nicolini, J. Mengis, and J. Swan, “Understanding the role of objects in cross-disciplinary collaboration,”

Organization Science, vol. 23, no. 3, pp. 612–629, 2012.

[136] G. Fischer, “Social creativity: turning barriers into opportunities for collaborative design,” in Proceedings of

the eighth conference on Participatory design: Artful integration: interweaving media, materials and practices-

Volume 1. ACM, 2004, pp. 152–161.

[137] M. Tohidi, W. Buxton, R. Baecker, and A. Sellen, “Getting the right design and the design right,” in Proceedings

of the SIGCHI conference on Human Factors in computing systems, 2006, pp. 1243–1252.

112

http://dx.doi.org/10.1007/s10606-007-9044-5

[138] G. Fischer, “Distances and diversity: sources for social creativity,” in Proceedings of the 5th conference on

Creativity & cognition. ACM, 2005, pp. 128–136.

[139] B. E. John, L. Bass, R. Kazman, and E. Chen, “Identifying gaps between hci, software engineering, and design,

and boundary objects to bridge them,” in CHI ’04 Extended Abstracts on Human Factors in Computing Systems,

2004, pp. 1723–1724.

[140] A. Walenstein, “Finding boundary objects in se and hci: An approach through engineering-oriented design

theories.” in ICSE Workshop on SE-HCI. Citeseer, 2003, pp. 92–99.

[141] A. F. Phelps and M. Reddy, “The influence of boundary objects on group collaboration in construction project

teams,” in Proceedings of the ACM 2009 International Conference on Supporting Group Work, 2009, pp. 125–

128.

[142] L. A. Dabbish, P. Wagstrom, A. Sarma, and J. D. Herbsleb, “Coordination in innovative design and engineer-

ing: observations from a lunar robotics project,” in Proceedings of the 16th ACM international conference on

Supporting group work. ACM, 2010, pp. 225–234.

[143] S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson, “How does radical collocation help a team succeed?”

in Proceedings of the 2000 ACM conference on Computer supported cooperative work. ACM, 2000, pp.

339–346.

[144] P. Heinrich, M. Kilic, F.-R. Aschoff, and G. Schwabe, “Enabling relationship building in tabletop-supported

advisory settings,” in Proceedings of the 17th ACM conference on Computer supported cooperative work &

social computing. ACM, 2014, pp. 171–183.

[145] F. E. Ritter, G. D. Baxter, and E. F. Churchill, Foundations for Designing User-Centered Systems. Springer,

2014.

[146] J. Brooke, “Sus-a quick and dirty usability scale,” Usability evaluation in industry, vol. 189, p. 194, 1996.

[147] W. Albert and T. Tullis, Measuring the user experience: collecting, analyzing, and presenting usability metrics.

Newnes, 2013.

[148] J. Lee, L. Garduño, E. Walker, and W. Burleson, “A tangible programming tool for creation of context-aware

applications,” in Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous

computing. ACM, 2013, pp. 391–400.

[149] M. T. Blake, “An ambulatory monitoring algorithm to unify diverse e-textile garments,” Master’s thesis, Virginia

Tech, 2014.

113

[150] E. Y.-L. Do, “Design sketches and sketch design tools,” Knowledge-Based Systems, vol. 18, no. 8, pp. 383–405,

2005.

[151] Y. Oh, M. D. Gross, S. Ishizaki, and E. Y.-L. Do, “A constraint-based furniture design critic,” Research and

Practice in Technology Enhanced Learning, vol. 5, no. 02, pp. 97–122, 2010.

[152] A. Payne and J. K. Johnson, “Firefly Experiments,” http://fireflyexperiments.com/.

[153] B. Hartmann, “Gaining design insight through interaction prototyping tools,” Ph.D. dissertation, Stanford Uni-

versity, 2009.

[154] Balsamiq, http://www.balsamiq.com/products/mockups.

[155] CogSketch, http://www.qrg.northwestern.edu/software/cogsketch/, 2015.

114

http://www.qrg.northwestern.edu/software/cogsketch/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Research Questions and Contributions
	1.2.1 Research Questions
	1.2.2 Contributions

	1.3 Dissertation Organization

	2 Background and Related Work
	2.1 Need for Interdisciplinary Design
	2.2 Challenges in Interdisciplinary Design of Ubicomp
	2.2.1 Design Materials
	2.2.2 Design Processes
	2.2.3 Design Tools and Prototyping

	2.3 Survey of Pervasive Computing Design Tools
	2.3.1 Tool Properties Under Evaluation
	2.3.2 Multiple Representations
	2.3.3 Event Description
	2.3.4 Knowledge Support
	2.3.5 Device Support
	2.3.6 Integration with Current Practice

	2.4 Summary

	3 Model-Driven Architecture for Pervasive Computing System
	3.1 Related Work
	3.2 Adopting a Model-Driven Approach
	3.2.1 Definitions and Assumptions and Approach
	3.2.2 Challenges Using Storyboards
	3.2.3 Meta-Models of Pervasive Systems, Electronic Storyboards, and Timed Automata
	3.2.4 Instantiating Electronic Storyboards in Eclipse GEF

	3.3 Model Transform from Electronic Storyboards to Timed Automata
	3.3.1 Layout Analysis
	3.3.2 Global Partition
	3.3.3 Local Synthesis
	3.3.4 Resolving Behaviors and Generating Design Artifacts
	3.3.5 ICON: Storyboard

	3.4 Summary

	4 Evaluating Electronic Storyboards As Boundary Objects
	4.1 Introduction
	4.2 Modeling Product Design in Pervasive Computing
	4.2.1 Pervasive Computing as Balancing Computation, User Interaction, and Physicality
	4.2.2 Boundary Objects in Collaborative Work and Product Design

	4.3 Developing a User Study
	4.3.1 Study Questions
	4.3.2 Experimental Setup
	4.3.3 Assumptions and Limitations

	4.4 Summary

	5 Results
	5.1 Supporting Design Discussions
	5.1.1 Discipline-based Sentiment
	5.1.2 Storyboarding
	5.1.3 Tagging

	5.2 Supporting Design Iteration
	5.2.1 Iteration through Queries
	5.2.2 Iteration through Code, Text, and State Charts

	5.3 Addressing Usability
	5.3.1 SUS and Task Times
	5.3.2 Reported Tool Benefits
	5.3.3 Proctor Intervention

	5.4 Assessing Models and Transformations
	5.5 Summary

	6 Conclusions and Future Work
	6.1 Reflections and Guidelines for Future Design Tools
	6.2 Future Work
	6.3 Summary

	A Storyboard Compilation
	A.1 Layout Analysis
	A.2 Global Partition
	A.3 Local Synthesis

	B Development History of Electronic Storyboards
	B.1 Overview
	B.2 Tool Environment and User Input
	B.2.1 Version A: Balsamiq Mockups
	B.2.2 Version B: Java + Swing GUI
	B.2.3 Version C: Eclipse Graphical Editor Framework

	B.3 Errors and Warnings

	C Publications and External Funding
	D IRB Approval
	E Copyright Statements
	F Bibliography

