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ABSTRACT
In this paper we outline methods for extracting behav-
ioral descriptions of interactive prototypes from elec-
tronic storyboards. This information is used to help
interdisciplinary design teams evaluate potential ideas
early in the design process. Using electronic story-
boards provides a common descriptive medium where
team members from different disciplinary backgrounds
can collectively express the intended behavior of their
prototype. The behavioral information is extracted by
a combination of visual tags applied to elements of the
storyboard, analysis of storyboard layout, and natural
language processing of text written in the frames. We
describe this process, provide a proof of concept exam-
ple, and discuss design choices in developing this tool.
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INTRODUCTION
In this paper we present a novel information extraction
process to create behavioral models of interactive sys-
tems from electronic storyboards. Our approach allows
storyboards to serve as a common design tool for in-
terdisciplinary teams and enable those teams to reason
about system behavior or aid in implementation. We fo-
cus on the early stages of the design cycle where ideas
are often in flux. As such, the artifacts generated by this
process are not final products, but rough examples that
are useful for generating discussion amongst the design
team. This type of prototyping is important during the
early stages of design when many ideas regarding form,
function, and behavior are being evaluated [28].
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In an interdisciplinary setting, the insight and experi-
ence of all team members is required, especially when
creating and evaluating prototypes. The close proximity
of technology and human experience, inherent in per-
vasive computing systems, necessitates that these sys-
tems be designed by the domain experts in the fields
in which the systems will be deployed. It is not the
engineers, who until now are the typical creators of per-
vasive systems, but the fashion designers, industrial de-
signers, and architects that are trained to work in these
domains. However, designing pervasive systems requires
knowledge of computing technologies and programming
languages that may be inaccessible to team members
without a computing background. Without appropriate
design tools and methods, the insights of non-computing
team members may be lost.

To address these problems, many tools have been cre-
ated that attempt to lower the barrier to learning pro-
gramming languages [4, 21, 26], or are customized tools
that target domain specific applications [16, 18, 24, 29].
However, these tools present their own difficulties. First,
even a simplified programming language can be a barrier
for team members who are not programmers. For these
members, their understanding of the prototype’s behav-
ior is solely dependent upon how well they understand
the programming language. Second, domain specific
tools can be suitable for specific projects, but they may
be cumbersome for a general design process where the
target application can change between projects. Thus,
a team may have a suitable tool for describing wearable
applications, but then be forced to use a different tool
for location-based systems.

We propose the use of electronic storyboards to enable
interdisciplinary teams to collaborate in the designing
and prototyping of pervasive computing systems. Elec-
tronic storyboards are a software design tool that allow
an interdisciplinary team to electronically draw and de-
pict how a user, or group of users, interacts with some
pervasive computing system. Storyboards are advan-
tageous because they can represent high-level behavior
such as context, location, action, and temporal phenom-
ena [12] [9, p.296] in multiple application domains and
are a format in which team members can collectively rea-
son about system behavior [14]. We intend for these sto-
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ryboards to be employed during the early design stages
when quick, low-fidelity prototypes are desirable.

Our work seeks to extend storyboards from a descriptive
medium, where ideas are illustrated, to one that is gen-
erative and can be used to prototype design ideas. We
achieve this by extracting behavioral information from
storyboards to form a model of computation that de-
scribes the depicted prototype. This model can be used
by the design team to reason about the prototype’s be-
havior or it can be synthesized into source code using tra-
ditional model-driven engineering techniques [3, 8]. The
ability to automatically create behavioral models from
the storyboard reduces the time between design itera-
tions and allows the team to produce more prototypes
over time, resulting in better design outcomes [22]. Fur-
thermore, the process of creating the behavioral model is
interactive and may reveal missing or ambiguous infor-
mation in the storyboard thereby facilitating discussion
of intended behaviors.

In this paper, we address the key difficulty of extracting
a suitable model of computation from electronic story-
boards. We present an information extraction method
where the team as a whole can collaborate on designing
prototypes by “tagging” visual elements of the story-
board that represent specific computing domain concepts
such as Event, Action, Time, and Context. Based upon
the user tags, the layout of the storyboard, and the nat-
ural language processing of textual annotations, a timed
automaton model of the prototype can be formed.

The remainder of this paper presents our process for cre-
ating the timed automaton and discusses design tradeoffs
for this approach. The following sections present related
work on prototyping tools and motivates the need for
interdisciplinary design of pervasive computing systems.
Next, we present an overview of the design challenges
in extracting behavioral information from the electronic
storyboards as well as a description of our approach.
Finally, we provide a proof-of-concept example that de-
scribes how a timed automaton can be formed. While
only a singular example, it showcases many common
problems faced when extracting information and is rep-
resentative of a wider class of problems.

BACKGROUND AND RELATED WORK
This section outlines the need for interdisciplinary design
of pervasive computing systems, describes the drawbacks
of existing prototyping tools, and discusses related work
in storyboarding.

Need for Interdisciplinary Design
The goal of pervasive computing is to make interactions
with computing technology subconscious, or cognitively
and physically invisible. Weiser said that our computers
should be “an invisible foundation that is quickly forgot-
ten but always with us, and effortlessly used throughout
our lives” [32]. Achieving these “invisible” interactions
requires detailed knowledge about the needs and desires
of the end user. To understand these needs, creators

of pervasive systems must “uncover the very practices
through which people live and to make these invisible
practices visible and available to the developers of ubi-
comp environments” [1]. Understanding these invisible
interactions requires an interdisciplinary approach that
includes not just technology researchers and engineers,
but also designers, particularly but not limited to indus-
trial design, architecture, and apparel. It is these prac-
titioners who are trained to understand human behavior
and the subconscious motivations and interactions of the
end user [31,32]. Working in an interdisciplinary setting
aligns with the foundations and goals of pervasive com-
puting by combining a revolution in technology with a
focus on human experience that makes human-computer
interaction calming and supportive.

Existing Tools and Related Work
Creating meaningful pervasive computing interactions is
a balance of constraints between the user experience,
physical form of the system, and the underlying com-
putational platform. In an interdisciplinary setting, the
introduction of computing technology, such as microcon-
trollers, sensors, and actuators, may exclude team mem-
bers from fully engaging in the design process as they are
unfamiliar with particular technologies, or have a limited
understanding of programming concepts. While it is not
expected that every team member should be an expert
programmer, or like-wise an expert designer, each mem-
ber should have sufficient knowledge and tools to work
across disciplines.

Several tools have been created that address these prob-
lems and fall into two large categories: either general
programming languages that are aimed at novices, such
as Scratch For Arduino [26] and ModKit [6], or custom
tools targeted at a particular application domain, such
as dTools [16], aCAPpella [11], CAMP [29], or Activity
Designer [18].

In an interdisciplinary setting either of these approaches
may still create difficulties. Requiring non-programmers
to learn a programming language creates an additional
barrier for those members to engage in prototyping. De-
pending on the level of abstraction in the programming
language, team members may be caught up in the de-
tails of the underlying implementation, rather than rea-
soning about why a behavior did not work. As we will
describe in later sections, our electronic storyboards ad-
dress these issues by providing a high level of abstraction
that describe systems in terms of State, Event, Action,
and Context.

A similar difficulty is encountered by domain-specific
tools as they are tailored to work well in a particular
domain but may not be usable in all situations. Con-
sidering that pervasive computing applications span a
wide range from wearable computers to ambient spaces,
it is undesirable for design teams to switch tools when
working on different projects. Electronic storyboards ad-
dress this issue by utilizing the storyboard format that
has been used to express applications in domains such as
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augmented reality [27], conditional events for location-
based applications [33], mixed-media applications [7], or
creating GUI applications [17, 23, 25]. Additional work,
such as the MuiCSers framework and Timisto have fo-
cused on using storyboards as a general design tool by
extracting task sequences, abstract user interfaces, and
time sequences from storyboards [15,30].

While electronic storyboards address several issues, they
are not a replacement for all domain-specific tools or pro-
gramming languages. For certain applications it may not
be suitable to use a storyboard to describe the applica-
tion. Furthermore, because our approach describes ap-
plications at a high-level of abstraction, certain domain-
specific concepts may be difficult to implement or ex-
press. However, our electronic storyboard could still be
useful as the behavioral models generated from our tool
could serve as an input to existing tools.

MOTIVATION AND CHALLENGES USING ELECTRONIC
STORYBOARDS
In the previous section, we discussed the need for in-
terdisciplinary design of pervasive computing systems
and the difficulties in existing design tools. To address
these problems we advocate the use of electronic story-
boards for interdisciplinary teams. Here we outline the
requirements needed to extract behavioral information
from electronic storyboards and how to map that infor-
mation to a suitable model of computation. We intend
these storyboards to be used across application domains,
and to be employed during the early design stages when
quick, low-fidelity prototypes are desirable.

In the remainder of this section we provide establishing
definitions and discuss the design tradeoffs when using
electronic storyboards. Specifically, we address the (1)
tension between the ambiguous nature of storyboards,
and the specificity of software systems, (2) how proto-
type complexity is represented in the storyboard, and (3)
the need for storyboards to represent key semantics such
as time, action, and context, and how that information
maps to a model of computation.

Definitions and Assumptions
Electronic storyboards are a software design tool that
allow an interdisciplinary team to electronically draw
and depict how a user, or group of users, interacts with
some pervasive computing system. A storyboard typi-
cally contains a set of frames, with each frame containing
textual and visual annotations. Visual annotations en-
compass all the drawn elements of the storyboard, while
textual annotations are the words and phrases placed in
and around the frame.

A simplifying assumption made in this paper is that the
storyboard is drawn electronically using some computer
application. By using an electronic medium, the draw-
ings and markings on the storyboard can be recognized
as independent objects, such as words and images, and

Keyword Description Example
Person name of a person Jimmy, Mom, Dad

Context name of a context Meeting, Outside
Location physical location At Home
Temporal time interval Later, Meanwhile

Event triggering event Push a button
Action prototype’s response Display a Message
State prototype state name Idle, Waiting, Alert
Table 1: Supported tags for storyboard objects

not as a collection of individual strokes. This assump-
tion removes the need for sketch recognition in the story-
board, and makes the challenge one of sensemaking and
deriving high-level meaning.

Software Specificity vs Storyboard Ambiguity
When using storyboards to describe pervasive computing
systems, one of the most significant tradeoffs is between
the current practice of storyboarding, and the need to
accurately capture the semantics of the pervasive com-
puting system. Storyboards are often ambiguous and
leave details to the reader. In practice this can be use-
ful as ambiguity serves as a focal point for discussion
between team members and moves the design process
forward [9, p.117]. However, when describing pervasive
computing systems, this ambiguity is a barrier to correct
implementation of the intended system behavior. Proto-
types of these systems often require assembling hardware
and software components, where ambiguity in the imple-
mentation may create incorrect or undefined behaviors.

Our approach strikes a balance between the needs of
the design team, and the requirements of correct im-
plementation through a combination of keyword “tags”
applied to visual elements of the storyboard, and nat-
ural language processing of text throughout the story-
board. When creating a storyboard, the design team
can “tag” visual elements within the storyboard to in-
dicate that image contains important information. Our
example tags are shown in Table 1 and allow the de-
sign team to indicate semantic information about a pro-
totype’s behavior using State, Event, and Action tags,
or indicate important contextual information using Per-
son, Location, Temporal, and Context tags. This tagged
information is supported by natural language process-
ing (NLP) [10] of text within the storyboard. Any
words, text, or labels contained within the storyboard
are parsed using NLP to identify additional information
regarding events, locations, or time. These NLP results
supplement the information from the tags and allow the
design team to incompletely describe a prototype, ei-
ther intentionally or not, and thus enable the storyboard
to retain some ambiguity. Given the inaccuracy of the
natural language tools, their results are considered less
authoritative than elements tagged by the design team.
We resolve this issue by querying the user before any
NLP information is accepted when creating the behav-
ioral model.
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Complexity of Behavior within a Storyboard
When using an electronic storyboard, the design team
depicts the intended behavior of their prototype using
frames, images, and text. Depending on the complexity
of the intended behaviors, the storyboard can be rather
large. Simple storyboards describe simple prototypes,
but as the number of behaviors increases for the proto-
type, so does the complexity of the storyboard. While
storyboards do not necessarily enable concise descrip-
tions of a prototype, they do enable the description to
be understood across disciplinary boundaries.

The complexity of the prototype is most readily appar-
ent in the layout of the storyboard. Typical storyboards
have a linear flow, meaning that are read left to right.
When used to describe interactive behavior, the layout
lends itself to expressing behaviors in a linear and causal
order. An example of this linear layout in shown in Fig-
ure 1a. However, when developing interactive systems,
there are often conditional or iterative behaviors that
need to be expressed. For example, a device should make
a choice between two inputs, or should continue a behav-
ior until some condition is met.

Keeping the linear structure of a storyboard would make
expressing these situations more difficult. To address
this problem we have added arrows to connect frames
with conditional events as shown in Figure 1b. In this
way, the linear structure can be extended to exhibit
branching behavior. These arrows can also be used to
express looping behavior where the storyboard returns
back on itself as in Figure 1c. By augmenting the tra-
ditional structure of storyboarding we can allow design
teams to express additional “computational” behaviors
without sacrificing existing practice.

Mapping Storyboard and Model Semantics
Earlier in this section we discussed how information in
storyboards can be expressed through keyword tags, nat-
ural language processing, and the layout of the story-
board. To enable these information sources to aid in gen-
erating a behavioral model, their information must be
mapped to a suitable model of computation. A “good”
model of computation must have several properties: (1)
support easy transformation of storyboard information
to model information, (2) capture key prototype behav-
iors such as action, response, time, and context, and
(3) support code generation to enable rapid creation of
the prototype. For our approach, we selected timed au-
tomata to represent the prototype’s behavior within the
storyboard. A timed automaton describes a system as a
series of states, with each state having trigger conditions
and responsive actions between states. These models
can be considered an extension of finite state machines
as they allow transitions based upon time.

Timed automata are flexible and can be used to describe
moderately complex systems [5]. Additionally, several
of the keywords in Table 1 map directly to timed au-
tomaton concepts as shown in Figure 2. The keywords

State, Event, and Action directly map to timed automa-
ton states and transitions, whereas contextual informa-
tion can be represented as a superstate that enables the
timed automaton. Furthermore, timed automata can
capture temporal phenomenon contained in storyboards.
While frames are typically rendered in a linear order,
their content can be highly variable with regard to tem-
poral information. Timed automata are advantageous
because transitions between states occur based upon an
independent clock that is external of user input. In sit-
uations when there are temporal relationships between
automata, for example some behavior must occur be-
fore another, we have adopted an interval algebra [2]
that is used to specify how those automata should be
ordered and executed. Finally, timed automata can be
used to automatically generate code [3, 8] that can fa-
cilitate implementing the prototype once the model has
been formed.

INFORMATION EXTRACTION METHOD
In this section, we discuss our approach for extracting be-
havioral information from an electronic storyboard. We
describe how storyboard information, expressed through
a series of keyword tags and natural language processing
of textual information can be transformed into a timed
automaton. Figure 2 provides a graphical description
of how storyboard information can be mapped to the
timed automaton. As we will discuss later in this sec-
tion, images that have been tagged in the storyboard
can directly map to timed automaton elements, while
textual information must be parsed before use.

The process described in this section has been im-
plemented using the Eclipse Graphical Editor Frame-
work [13] which allows users to electronically draw and
annotate a storyboard. A screenshot of the GUI as seen
by the user is shown in Figure 3. The remainder of this
section describes the specifics of how the storyboards are
implemented in GEF, and how the storyboard model is
transformed into a timed automaton.

Electronic Storyboards in Eclipse GEF
An implementation of electronic storyboards has been
created in GEF that allows users to draw a storyboard
using frames, images, and text. Images placed on the
storyboard canvas can then be “tagged” using the set
of keywords in Table 1 where each tag reflects a specific
type of information. In addition to images, users can also
place labels that contain arbitrary text, and frames to
contain both the images and text and provide a structure
to the storyboard. The design team can then “compile”
the storyboard from within Eclipse and interact with the
tool using the console.

Visual annotations and labels can be placed on the sto-
ryboard canvas by dragging and dropping elements from
the palette shown on the right-hand side of Figure 3.
These elements can be easily resized and moved in and
out of frames. Specific information about each annota-
tion, such as a Person’s name or a particular Location
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(a) Linear Layout (b) Branching Layout (c) Looping Layout

Figure 1: Frame layouts to express different conditional behavior. The numbers in each frame indicate the order
in which they would be “read” by the storyboarding tool. (a) shows linear storyboard frames that are read left to
right. (b) allows for conditional behavior to branch away from the linear layout. (c) uses arrows to loop back on the
storyboard.

Figure 2: Mapping from storyboard objects onto a timed
automaton

can be modified in the Properties View below the can-
vas. In Figure 3, the Properties View shows the model
information for a State tagged image, and allows the user
to give the state a name, resize the image, and identify
what device it belongs to. The attributes for each image
change depending upon the keyword tag applied. For ex-
ample, an image tagged as a Person could be given the
attribute “John”, or a tagged State as “Idle” or “Run-
ning”. The attributes given to Context and Location
objects have more significance as they help partition the
storyboard into different sets of behavior. In addition to
existing storyboard objects (frames, text, and images),
we have added arrows that connect frames across the sto-
ryboard. These are used to indicate conditional behav-
iors in the storyboard that may not be directly indicated
from the layout.

Transforming Storyboards into Timed Automata
In the previous sections, we discussed how electronic
storyboards are implemented in Eclipse. This section
presents a method for converting electronic storyboard
information into timed automata. The first subsection
describes how storyboard information corresponds to
timed automaton objects. The timed automaton can
then be synthesized in two phases: first, the layout of the
storyboard is partitioned into regions of similar time and
context then each region is compiled into an automaton.

Mapping Storyboard Objects to Timed Automata
Within electronic storyboards, there are two main types
of information: visual images that have been tagged by

the design team and the results of natural language pro-
cessing from any text or words placed on the storyboard.
Figure 2 shows how these two sets of information can be
mapped to a timed automaton. Using the keywords in
Table 1 tagged visual annotations within the storyboard
can be directly mapped to timed automaton elements,
e.g. State, Action, Event, and Context. For example,
an Event tag corresponds with a state transition trigger,
while an Action tag maps to a responsive action by the
automaton.

Textual annotation are parsed using Semantic Role La-
beling (SRL) and Named Entity Recognition (NER)
using the Senna Natural Language Processing (NLP)
tool [10]. SRL identifies the structure and content of
a sentence, such as verbs, direct object, indirect object,
temporal modifiers, or locations. NER identifies words
that are a person, location, or time indicator. These nat-
ural language results aid in capturing behavioral infor-
mation that is not explicitly tagged by the design team.
For example, if an Action or Event is not tagged, its
existence could be inferred by a verb clause found by
SRL.

Because of the ambiguity in natural language process-
ing results, this information is considered less authorita-
tive and does not automatically map to timed automa-
ton concepts. When parsing the storyboard, if certain
tagged information is missing, the NLP results are con-
sulted for the missing information. However, as we will
see in the following section, the user is queried before any
NLP information is used to create the timed automaton.

Partition Based Upon Time and Context
The first step in creating the timed automaton is to par-
tition the storyboard into regions of similar context and
time. At present, partitioning is done by “reading” the
storyboard frame by frame. For a group of frames, the
first context or time interval encountered is set as the ini-
tial value. If new contexts or time intervals are encoun-
tered, the previously read frames are partitioned into
their own set and a new set is created with the newly
encountered time or context.

Context and time information can be found from Con-
text, Temporal, or Location tags, or from location re-
sults from natural language processing. Currently, the
tool can identify that some information is related to con-
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text or time, but it cannot distinguish between differ-
ent contextual information. For example, two contexts
“at home” and “at work” that are tagged by the design
team are easily recognized, but the tool itself has no
means to distinguish these contexts and requires the de-
sign team to differentiate between the two. A semantic
understanding of these contexts could be accomplished
through tools that enable novice users to define contexts
of interest [11], or existing architectures to recognize and
disseminate context [19]. However, an implementation of
these approaches is beyond the scope of this work. Re-
garding temporal information, our approach does deter-
mine relationships between time intervals by using inter-
val algebra [2] to provide a formal definition of temporal
ordering.

Building Local Behavior
After the storyboard has been partitioned into sets of
similar time and context, each set is analyzed to build
a timed automaton. The storyboard is read according
to its layout and each frame is analyzed for informa-
tion relating to the behavior of the prototype. The tool
looks for State, Event, and Action tagged images which
correspond to states of the automaton, the triggering
events between states, and the actions taken by the sys-
tem. Parsing continues until one of two stop conditions
is reached: two states have been found, or an event and
action have been found. Each condition reflects that
a state transition has occurred indicating the depicted
prototype executed some behavior. With two states, it
is known that a transition has occurred, but the triggers
and responses may be unknown. With an event and ac-
tion the transition is described, but its originating and
next states are unknown. In the absence of tagged ob-
jects, the textual annotations within the storyboard are
queried based upon SRL and NER parsing results. If
NLP information is not available, or the user does not
select any NLP results, the user will be asked to man-
ually specify the missing information. Additionally, if
multiple tagged events and actions or available, the user
will be asked to specify which events and actions cause
the transition.

FEASIBILITY OF EXTRACTING INFORMATION FROM A
STORYBOARD
This section showcases an example of how to use elec-
tronic storyboards to synthesize a timed automaton. We
have developed a Java-based proof-of-concept tool in
Eclipse GEF that implements the information extrac-
tion process described in the previous section. The tool
reads an electronic storyboard and interacts with the
user to resolve ambiguous or missing information in the
storyboard. The example storyboard, as shown in Fig-
ure 3, is taken from an interdisciplinary product de-
sign course [20] and has been re-created by the authors
with keywords to describe the prototype’s behavior and
provide a proof-of-concept for our approach. No other
changes have been made to the original storyboard.

While this section only examines a single example sto-
ryboard, it has been intentionally chosen as it highlights
many common difficulties encountered when synthesiz-
ing electronic storyboards. Based upon our experiences
working with college-level product design teams and re-
cent work with middle school students, most storyboards
will be incompletely tagged and fall under the same class
of storyboard as our example here. It is important in this
example that the tags applied to the storyboard do not
fully specify the prototype. As we will see, there are
missing “event” tags in the first three frames, and no
tags for “event” or “action” in the later frames. This
forces our tool to rely on natural language processing
and to query the user for missing information. As this
paper is a study of the feasibility of using electronic sto-
ryboards, and this example is representative of many
common storyboards, our methodology must show that
it can address these types of storyboards to be a viable
design tool.

The example storyboard in Figure 3 shows a child inter-
acting with a smart watch. The storyboard illustrates
how a father and son can communicate to keep up to
date on the son’s blood glucose levels. The parts of the
storyboard shown illustrate the response of the watch
when it receives a message and how the son can push a
button to display and read the message.

In Figure 3, tagged elements of the storyboard are indi-
cated by arrows pointing to different visual annotations.
In the first frame there are three tagged elements. The
image of the child is tagged as a Person and given the
name Jimmy. The picture of the watch is tagged as a
State of a device and assigned the name Idle. Finally,
the first image with the sun is tagged as a Context and
assigned the name Outside. Once these elements are
tagged, their information persists across the storyboard.
Thus in the second frame, the watch is known to be in
an Idle state without having to re-tag the visual anno-
tation. In addition to tagged storyboard elements, the
results of the NLP parsing are shown in Table 2. For the
SRL and NER results, V indicates a verb, A0 a direct
object of the verb, A1 an indirect object of the verb,
TMP a temporal modifier, and LOC a location.

As described in the previous section, the storyboard is
automatically converted into a timed automaton in two
phases. First, the storyboard is partitioned into sets of
frames that occur under the same context and during
the same time interval. After the frames have been par-
titioned, each set of frames is parsed to isolate behavior
about the prototype. Each frame is searched for states
of the prototype, events that it responds to, or actions
that the prototype performs. For our example story-
board, the timed automaton in Figure 4 is generated by
the process. We illustrate how that automaton is created
in the remainder of this section.

Partitioning Based Upon Time and Context
Beginning with the first frame, the storyboarding tool
searches for context and time information. Initially the
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Figure 3: Screenshot of electronic storyboarding tool in Eclipse showing an example storyboard, palette, and properties
view. Arrows indicate the type of tagged object and its value.

tool does not have any understanding of time or con-
text, but adopts the first meaning that it finds. From
that point forward, new time intervals or contexts are
compared with the current to see if they are similar.
Using the information in Table 2, the tool searches for
frames that provide information regarding time or con-
text. Time information is found from any tagged Time
keywords, or any NLP result with the TMP tag. Sim-
ilarly, context information is found from any Context,
Location, or Person tags or any NLP result with the
LOC tag (indicating location).

The Context “Outside” is created as the initial context,
as it is found from tags in Frame 1. However, within the
same frame, a location “in the neighborhood” is found
from the NER results. Presently, our method cannot
determine the difference between contexts based solely
upon name, so the user is queried via the console to de-
termine if they are different. For this storyboard contain-
ing the contexts “outside” and “in the neighborhood”
the user would respond that they are equivalent contexts
so the tool continues through the storyboard. As no new

contexts are encountered through the remainder of the
storyboard, all the behaviors within the storyboard are
assumed to occur under the context “outside”. This is
represented by the superstate in Figure 4 that contains
the whole automaton.

Building Local Behavior
After partitioning the storyboard, the tool scans each
frame for State, Event, or Action information until one
of two stop conditions is reached: two states have been
found, or an event and action have been found. Each
condition indicates that a change in behavior has oc-
curred. With two states, it is known a transition has oc-
curred but the triggers and responses may be unknown.
With an event and action the transition is described, but
its originating and next states are unknown.

Returning to the example storyboard in Figure 3, the
tool reads Frames 1 to 3 and encounters two states and
an action. Frame 1 shows the smart watch in the Idle
state, Frame 2 shows the Action alert, and Frame 3 pro-
vides a new state called WatchAlert. Currently, two
states are known (Idle and WatchAlert) along with the
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Frame Tags Semantic Role Labeling Named Entity
1 Person:Jimmy,

Context:Outside,
State:Idle

A0: Jimmy V: playing LOC:in the neighborhood Jimmy:Per

2 Action:Alert —– —–
3 State:WatchAlert A0: He V: received A1: a message —–
4 State:WatchAlert A0: He V: presses A1: the top of his Icon —–
5 State:WatchMessage A0: Jimmy V: check A1: his blood glucose levels Jimmy:Per

Table 2: Information extraction from an example storyboard (V=verb, A0=direct object, A1=indirect object,
LOC=location, TMP=temporal, PER=person)

Figure 4: Timed automaton derived from example sto-
ryboard. Information sources are indicated with dashed
arrows.

Action “Alert”, which is the watch’s response to the state
change, but the trigger of the state change is unknown.
With no tagged information to guide it, the tool asks the
user for the triggering event. Since the action “Alert”
is known the tools asks “Does the following statement
cause the action Alert?” This question is posed for each
SRL result in Table 2 and the user is asked to respond
’yes’ or ’no’. For the example storyboard, the user is
asked whether “playing in the neighborhood” or “re-
ceived a message” caused the Action Alert. The user
would respond that “receive a message” is the correct
trigger. Using this process, the tool has found that the
watch moves from State Idle to State WatchAlert when
“received a message” occurs and should respond with an
Action called Alert. This information is represented in
the timed automaton in Figure 4 as a transition between
the two states Idle and WatchAlert. After creating this
behavior, the tool continues parsing the storyboard.

Beginning in Frame 4 the tool encounters State
WatchAlert and then State WatchMessage in Frame 5.
In contrast to the earlier frames, there are no tagged
events or actions to indicate what causes the transition
between these states. The tool attempts to resolve this
issue by asking “Does the following event cause the sys-
tem to transition from WatchAlert to WatchMessage?”
using the SRL results in Table 2. Thus, the user would
be asked whether “presses the top of his Icon” or “check
his blood glucose levels” is the triggering event of the
transition. Here the user responds that “presses the top
of his Icon” causes the state transition. However, the

transition cannot be completed as a responsive action is
still missing. The behavior implied by the storyboard
is that the message should be displayed after the but-
ton is pressed. In this situation the tool would continue
to ask the user if the remaining SRL result, “check his
blood glucose levels”, is the responsive action. As this is
not the expected behavior the user would decline these
result. Having exhausted all information resources, the
tool will ask the user to manually specify the action. The
user could then manually type a response such as “dis-
play the message” on the console. This final behavior
can now be added to the timed automaton in Figure 4
as a transition between WatchAlert and WatchMessage,
caused by pressing the button, and the user supplied
response.

After reading Frame 5 the parsing of the storyboard is
finished. The automaton in Figure 4 represents the be-
havioral model produced by this process. Additionally,
source code can be generated from the automaton. Pro-
gram 1 shows a portion of generated code that shows
the transition logic for the automaton using the Arduino
programming language [4]. The code initially checks to
if “outside” is the current context and then executes the
logic defined by the automaton.

DISCUSSION
In the previous section we showed the feasibility of
extracting behavioral models from an electronic story-
board. While the process of deriving the model can seem
involved, from the perspective of the user, creating the
timed automaton takes less than a minute. The time
required to create the automaton is dependent upon the
information content of the storyboard. If all the nec-
essary States, Events, and Actions are already tagged,
then producing the automaton is automatic. However,
if information is missing, the user will be queried until
the information is found, which may be cumbersome if
there are many NLP results.

While the example storyboard could be complied into
an automaton, not all storyboards can be. In particular,
the tool has difficulty identifying State information that
is not tagged. Events and Actions can be easily found
from verbs in natural language processing, but State in-
formation does not have a natural analogue. Without
tagged States, the tool cannot separate events and ac-
tions into individual transitions. The primacy of state
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State cu r r en tS ta t e=INITIALSTATE ;
State nextState ;
void loop ( ){

i f ( i sOut s ide ()==true ){
cu r r en tS ta t e=Id l e ;

switch ( cu r r en tS ta t e ){
case I d l e :

i f ( receivedAMessage()==true ){
a l e r t ( ) ;
nextState=WatchAlert ;

}
break ;

case WatchAlert :
i f ( pressesTheTopOfHisIcon()==true ){

displayTheMessage ( ) ;
nextState=WatchMessage ;

}
break ;

case WatchMessage :
break ;

}
}
cu r r en tS ta t e=nextState ;

}
Program 1: Arduino code created from the timed au-
tomaton in Figure 4

information requires that when using the tool teams take
care to tag States and may need specific instruction to
do so.

Finally, one drawback of our electronic storyboarding
approach is that generated models and code are gen-
eral and do not represent a specific domain. While this
allows design teams to describe applications across do-
mains, our approach does not facilitate automatic imple-
mentation of a fully functioning prototype. For the code
shown in Program 1, the design team would need to im-
plement the functionality to check for a message, beep,
or display the message. Given that the time required to
synthesize the storyboard and generate the code is short,
our approach can reduce the time between prototypes by
automatically implementing the logical structure of the
prototype.

CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a process for auto-
matically extracting behavioral information from elec-
tronic storyboards of pervasive computing systems. We
have validated this approach by implementing a proof-of-
concept tool that parses an electronic storyboard, gen-
erates a timed automaton of the storyboard, and auto-
matically synthesizes code for the prototype. We have
pursued the use of electronic storyboards because we
believe automatic synthesis of storyboards will reduce
the time between prototypes and increase the number of
prototypes that can be created by an interdisciplinary
team, thereby improving their ability to explore the de-
sign space.

For future work, we plan to evaluate our storyboarding
tool with novice and expert users to assess how the tool
impacts their design processes. We also plan to improve
the tool’s capabilities by providing shared views of the
design from various perspectives. It would also be useful
to have changes in the timed automaton cause the sto-
ryboard to change, so that a team can see how changes
in the model affect the storyboard or vice versa. Finally,
we would like to integrate physical CAD tools (e.g., 3D
renderings) with the storyboard tool so that a change
in the form factor of the design would propagate to the
storyboard.
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