
Paper ID #19898

A Student Project using Robotic Operating System (ROS) for Undergraduate
Research

Dr. Stephen Andrew Wilkerson P.E., York College of Pennsylvania

Stephen Wilkerson (swilkerson@ycp.edu) received his PhD from Johns Hopkins University in 1990 in
Mechanical Engineering. His Thesis and initial work was on underwater explosion bubble dynamics and
ship and submarine whipping. After graduation he took a position with the US Army where he has been
ever since. For the first decade with the Army he worked on notable programs to include the M829A1
and A2 that were first of a kind composite saboted munition. His travels have taken him to Los Alamos
where he worked on modeling the transient dynamic attributes of Kinetic Energy munitions during initial
launch. Afterwards he was selected for the exchange scientist program and spent a summer working
for DASA Aerospace in Wedel, Germany 1993. His initial research also made a major contribution to
the M1A1 barrel reshape initiative that began in 1995. Shortly afterwards he was selected for a 1 year
appointment to the United States Military Academy West Point where he taught Mathematics. Following
these accomplishments he worked on the SADARM fire and forget projectile that was finally used in the
second gulf war. Since that time, circa 2002, his studies have focused on unmanned systems both air
and ground. His team deployed a bomb finding robot named the LynchBot to Iraq late in 2004 and then
again in 2006 deployed about a dozen more improved LynchBots to Iraq. His team also assisted in the
deployment of 84 TACMAV systems in 2005. Around that time he volunteered as a science advisor and
worked at the Rapid Equipping Force during the summer of 2005 where he was exposed to a number of
unmanned systems technologies. His initial group composed of about 6 S&T grew to nearly 30 between
2003 and 2010 as he transitioned from a Branch head to an acting Division Chief. In 2010-2012 he again
was selected to teach Mathematics at the United States Military Academy West Point. Upon returning
to ARL’s Vehicle Technology Directorate from West Point he has continued his research on unmanned
systems under ARL’s Campaign for Maneuver as the Associate Director of Special Programs. Throughout
his career he has continued to teach at a variety of colleges and universities. For the last 4 years he has
been a part time instructor and collaborator with researchers at the University of Maryland Baltimore
County (http://me.umbc.edu/directory/). He is currently an Assistant Professor at York College PA.

Dr. Jason Forsyth, York College of Pennsylvania

Jason Forsyth is an Assistant Professor of Electrical and Computer Engineering at York College of Penn-
sylvania. He received his PhD from Virginia Tech in May 2015. His major research interests are in
wearable and pervasive computing. His work focuses on developing novel prototype tools and techniques
for interdisciplinary teams.

Cara Sperbeck, York College of Pennsylvania

Cara Sperbeck (csperbeck6@gmail.com) is currently an undergraduate senior pursing her BS in Computer
Engineering from York College of Pennsylvania. She has worked at Northrop Grumman as a Digital
Technology FPGA firmware designer (co-op) and Intelligent Automation Inc. as a Robotics and Software
Control Engineering Intern. Cara has received the Who’s Who Among Colleges and Universities Award
in January 2017 and was inducted into Alpha Chi National Honor Society for being in the top 5% in
York College Junior Class in October 2016. She has also received the Engineering Society of York (PA)
Award for being the top Sophomore Electrical/Computer Engineer in April 2016. Cara’s current research
interests include Digital Design, FPGA design, Robotics, and Computer programming.

Mr. Matthew Jones, York College of Pennsylvania

Major: Computer Science Minor: Mathematics Areas of interest: machine learning, web development

Mr. Patrick David Lynn, York College of Pennsylvannia

Senior Computer Engineer

c©American Society for Engineering Education, 2017

A Student Project using Robotic Operating System (ROS)
for Undergraduate Research

 In this student led undergraduate research paper we present a robotics project using the
Robot Operating System (ROS). The purpose of this student paper is to document their learning
path and steps taken for a project using three related, yet independent student projects so that
others might benefit from the details. The students worked together initially to learn enough
about ROS and it's development environment so that they might employ it. Thus far the use of
ROS has primarily been focused on graduate studies where improvements to the underlying
algorithms and techniques have been made. In this undergraduate approach no such attempts are
made in improving the foundation algorithms already developed by top researchers and schools.
Rather, the students employed published techniques to provide the foundation of their work.
Specifically, the project used the Turtle-bot architecture and modules within ROS to create the
components of a cooperative robotic mission. The crux of the mission is for one of the robots to
autonomously explore and map an area of the engineering building while leaving bread-crumbs
behind for another robot to follow. A third robot comes behind the second and uses the
information from the first two to locate tags distributed throughout the building. Each student
made a portion of this project, that could stand alone, so that others could use these individual
modules and details for their own projects without redoing what had been done here. The three
parts were broken into mapping, tag recognition with robot leader follower operations, and
object location and RF tag reading. It enabled students to use the existing sensors on the turtle-
bot, while incorporating new devices to complete their particular missions. In this paper the
students detail the learning path that was required to bring their individual technologies for their
sub project to fruition. Using their initial code and techniques will enable others to duplicate and
expand at a quicker pace. We have already seen this in the second semester as new students are
tackling tasks of increased difficulty building on what was done here. Furthermore, the students
detail the methods used and the code that they wrote to accomplish the tasks described. Finally,
the students identified the technologies required to learn and the research they did as a criteria of
merit. Additionally, a series of Youtube instructional videos and a file repository are available
for others to use. All of the code developed is given on google drives and GitHub for others to
use and is referenced at the end of this paper.

Introduction

 One of the difficulties with robotics is that it usually requires intricate knowledge of
hardware level details in order to even begin developing robotic systems (Quigley 2009).
Whether it's communicating with motor controllers, utilizing servos, interfacing with sensors or
implementing hardware acceleration for improved computing, learning robotics often requires
graduate level knowledge of these topics. This means that some robotics topics and capability

can be out of reach for most undergraduates, due to its steep learning curve. Fortunately, ROS
has numerous libraries and “how to examples” making it easy for students to learn and exchange
examples (Cousins et. al. 2010). When robotics is applied to a problem such as navigating a
hallway in order to deliver a soda to someone, or following a known target, these problems are
well suited for undergraduates. How the robot’s environment influences its decision-making is a
problem that can be researched and tackled by undergraduates. So, it would be beneficial to have
a way to work with robots that was within the grasps of undergraduate studies. The algorithms
and theory surrounding tasks involving in-depth knowledge of the hardware and software
systems are all taken care of by ROS. This is the void that ROS fills. ROS simplifies robotics by
abstracting away the hardware/software level issues and allows robotic engineers to focus
directly on solving problems. ROS does this by utilizing Ubuntu as an operating system and
implementing a set of common libraries that allows programmers to easily get robots to
communicate with other ROS enabled devices. This simplifies the process for adding
functionality to a robot, including its sensory equipment or servo motors. ROS requires much
less knowledge to learn than diving right into hardware level details and therefore, ROS makes
the learning curve much more manageable for undergraduates (Martinez et. al. 2013).

 When you couple ROS with project learning (Qidwai 2011) you create an environment for
undergraduate computer engineer to really expand their understanding of computation systems
and utilize much of the engineering theory that has been learned in class. With project based
learning the student gains a more complete understanding of the problem by necessity, because
they are the only one working on the project. This means that the student fully conceptualizes the
problem set in order to solve it, often leading the student to becoming some what of an expert of
the topics involved. Furthermore, project based learning allows students to learn at their own
pace. Since students do not all learn at the same rate, project based learning allows students to be
unhindered by pacing issues that are commonplace in traditional classroom settings. But most
importantly, project based learning mirrors industry, which forces the student to apply theory in a
pragmatic way. In industry you are not given monthly tests in order to prove your understanding;
in industry you tackle projects, in teams or individually, focusing on the task at hand until the
problem is solved. This is the part of industry that project based learning best represents and is its
most valuable asset.

 In order to get everyone on the same page, a course of study was undertaken to familiarize
students with the basic tools needed in this independent study project. In some cases the students
had no prior experience with linux, ubuntu, and had never heard of ROS or the Turtlebot/Kobuki.
To do this the first 6 weeks were spent doing the following:

• Learn Linux, Ubuntu, ROS Setup.

 To this end, students rebuilt the ubuntu laptops that ran the Turtlebots. They needed to
build from scratch the OS using ubuntu 14.04 and then load ROS, Turtlebot and other associated
libraries on the laptops. We had two different Asus laptops for this purpose that were both 32 bit
systems and 64 bit systems. Initially the students used the existing school wireless network to
run their experiments. However, it became obvious that this was insufficient and an independent
robot only network was built by the students for robot experiments.

• Learn the Robotic Operating System (ROS) and its development environment by
developing applications in C++ or Python.

 For this portion we employed the book “A Gentle Introduction to ROS,” (O'Kane 2014).
Students worked through the chapters in the first couple of weeks; this gave them the ability to
write both C++ and Python programs that accessed the information within the publisher
subscriber ROS environment. This course of study also enabled the students to better understand
the tutorial examples that were available online. Without this asset it would have been difficult
to fully understand the Turtlebot examples or how to access ROS topics, messages and other
vital information within the ROS framework.

• Learn how others have built ROS enabled programs for robotic systems by
recreating and extending several existing github ROS examples.

 For this portion we relied on internet examples. In particular the Turtlebot has a number
of tutorials on learning Turtlebot†. Additionally they have a series of challenges to further
understanding of the Turtlebot. However, these tutorials are step by step examples that do not
really teach you the workings of ROS, the Turtlebot, or how the publisher subscriber works. It is
our assertion here that becoming proficient with writing publisher subscriber programs, launch
files and the like can only be accomplished through examination of the details of the programs
needed to support program development. ROS is more than just a library and includes a central
server, command line tools, graphical tools and a build system. Our hypothesis is by combining
several resources ROS can be used for undergraduate research efficiently. What follows here are
the three projects that make up our overall goal stated in the beginning of this paper.

Individual projects:

1. Map making.

The Kobuki Turtlebot, a robot that relies on a relative coordinate system and dead
reckoning to drive autonomously using a blueprint map so the robot knows its location and
destination. The Turtlebot will simultaneously and computationally construct a map of the
environment, as well as its known relative position, in accordance with its location, by using
Simultaneous Localization And Mapping (SLAM) (Ghani et. al. 2014). Turtlebot uses the
SLAM algorithm called GMapping. Using GMapping, the robot analyzes an existing map to
find the best route to get to a destination(Schmidt et. al. 2012). If multiple routes exist there are
existing algorithms to help the robot make a decision.

In this paper, we document our findings of the many deficiencies in this method of

“Robot-made” mapping, and then we propose a method that does not have these same
deficiencies. We present a method where the floor plan could be converted to the map file
format that the robot understands. If a raster image of the floor plan exists, then this process will
work. The time consuming issues and lack of accuracy problems found with robot-made
mapping is eliminated. We will also compare how the robot drives and performs on the maps
generated from both map generation types.

† Turtlebot learning: http://learn.Turtlebot.com/

Robot made map

Creating a robot-made map is a 4 step process. First, the user loads the GMapping demo
software. Second, RViz, Turtlebot’s front-end live map visualization tool, needs to be loaded so
the user can visualize the map as they create it (See http://learn.Turtlebot.com/2015/02/01/11/ for
more details). Third, the user drives the Turtlebot around the desired environment until the user
is satisfied with the map coverage, as seen in RViz‡†. Lastly, the user saves the map to the
desired location in the computer’s file system. This last step creates and saves the map with the
output in the form of a “pgm” image of the map, as well as a “yaml”(Yet Another Markup
Language) configuration file (Sumaray et. al. 2012). The “pgm” is an image that shows the
blueprint of the environment that the Turtlebot just traversed, and the “yaml” file is the
configuration file for the map. The “yaml” file is also used to load a map onto the Turtlebot,
linking the “pgm” blueprint, as well as the other meta information. The “yaml” contains
information such as the base path of the “pgm” blueprint associated with the “yaml,” the origin
(the coordinates of the Turtlebot when the map making process began), and the image resolution.

Maps made by Turtlebot using GMapping are far from perfect. When viewing the map

being made in RViz, the user can sometimes see the map rotate at an angle or shift, either
horizontally or vertically, in the middle of making a map. This can be due to the robot’s
“confusion” from poor odometry. If the robot’s wheels slip in the middle of making a map, the
new distance between the map origin and the current position is not equivalent. The robot will
now believe that it is ‘x’ amount of wheel turns ahead of its actual physical position. In addition,
depending on the camera, depth sensors, and laser range finders used on the robot, the accuracy
of the robot-made map will vary. Furthermore, when driving the Turtlebot around, the user will
see that the map will have missing sections that the robot does not see, as shown in Figure 1.1.
The user will need to drive the robot over the missing map section many times before the robot
recognizes the spot. The Turtlebot odometry was poorest when Turtlebot drives slowly over
slippery cement floors, so in similar conditions the user should try to ensure to move at a decent
pace when making the map. They should drive the perimeter first, and then finish in the middle
of the hallway or room. Turtlebot uses dead reckoning to match up places and objects it has seen
in relation to its current position.

Figure 1.1 Robot-made map created with GMapping
illustrating the gaps made in the middle of the map.

‡† RViz is a GUI used by ROS applications for more info see: http://wiki.ros.org/rviz/Tutorials

Another potential disadvantage of creating a robot-made map is that it can be very time

consuming if the user is attempting to make a large map. In the section of map in the blue box in
Figure 1.3, a relatively small hallway took about a half hour to create by driving the robot
around. The whole map shown in Figure 1.3 is only the section of map in the red box in Figure
1.2, the entire floor plan. That red box only encompasses the portion of the hallways that are the
perimeters around the map, and it does not include the rooms. The rooms in the middle were not
mapped in this process. The perimeter took approximately 4 hours to map by robot. By
extrapolation, the entire floor plan would take around 40 hours. Therefore, the user should
consider the battery lifetime for the robot, robot laptop, and user laptop when creating the map.
In this case, small areas of the map should be completed at a time. Photo-editing software, such
as Gimp on Linux, can be used to stitch the multiple map sectors together to create a large master
map, although this introduces human error as well as bot error, and a new “yaml” file will need
to be created in this case for the new map. In addition, if the accuracy of the bot map is poor, or a
map shift occurs and is not recognized and fixed during the map creation, then stitching portions
of the map together will not be possible. That sector will need to be re-mapped and re-stitched
together. However, a shifted map may be stitched in the beginning, and the user may not realize
that the basis of the master map is now distorted, which is very plausible depending on the floor
layout being mapped. It is also possible that a newly inserted map section could be correctly
mapped, but may not fit into the current master map because of the original shifted map. This can
get the user stuck in a loop, not knowing which sectors are correctly mapped and inserted into
the stitched map.

 Figure 1.2 Floor Plan Map Figure 1.3 Robot-Made Map

Using a building floor-plan to create a ROS map.

If the user has access to a floor plan of the building, it could be converted into the
appropriate “pgm” and “yaml” that the robot reads as a map; then the time consuming and lack
of accuracy issues would be eliminated. We created a python program, MakeROSMap.py‡, that
is designed to allow the user to input a floor plan of any picture type (“jpeg”, “png”, etc.), and
then the program will convert these pictures into a ROS map (the “pgm” and “yaml” files)

‡ To download code see: https://drive.google.com/file/d/0B2AcDRX3bKLVdjhPU1B2UUNRaDA/view

needed by Turtlebot. The user provides the program with 4 (x, y) coordinates: 2 in the x
direction and 2 in the y direction. The user then inputs the x and y distances between the two
points in order for the program to scale the floor plan correctly. Without appropriate map scaling,
the Turtlebot will be at a different point on the map displayed in RViz than in its actual
environment. The map needs to be scaled to the Turtlebot’s environment (See
https://www.youtube.com/channel/UCQgDH1KtuoDZkafNM0QiC-A for additional details).
Furthermore, the program will output a “yaml” file for the user to associate with the map.

There are two main concepts to note when running this program. First, when selecting the

two coordinate points, for both x and y, the user should ensure that the points selected are linear
with respect to each other. The code then calculates the distance between the two points,
assuming the points are horizontal and vertical to one-other. Without this close linear
approximation, the map will not be scaled appropriately to the map’s physical location. Second,
the program will ask the user where to save the program’s output (the map “pgm” and “yaml”),
and it will save it to that location. If the program is not run on the Turtlebot laptop, the “pgm”
and “yaml” files will be saved to the right location on the file system on which the program is
run, but it will be on the wrong computer. When loading a map onto Turtlebot, the map must
reside on Turtlebot for it to work accurately. The user needs to save the program output to the
desired location, and then transfer the output to the Turtlebot. This will allow for the program to
write the correct data to the “yaml” file.

Map options comparison.

Based on our test results, creating a map from a building’s floor plan is much quicker
than creating a robot-made map using SLAM and GMapping. We found that it will take the user
only a few minutes to input the original floor plan and have a completed ROS map converted and
resized. As stated above, creating a map by driving the robot around can take many hours,
whereas running this program can take less than 5 minutes. To determine which type of map,
either a robot-made map or a floor plan map, the robot drives better on, the Turtlebot was sent to
different locations separately on both maps, and the performance was analyzed.

On the robot-made map, Turtlebot drove rather well despite its imperfections. Our

observations show that the Turtlebot relies on both cameras and sensors in addition to the map,
leading for the performance to be better than if Turtlebot was relying solely on the map. There
are 3 main problems that were observed when driving Turtlebot on this robot-made map. The
maps shown in Figures 1.4a,b were previously edited in Gimp as explained earlier. Any missing
gaps were filled in and small sections of the map were stitched together to create a master robot-
made map.

Figures 1.4 a,b Highlighting problems encountered in the robot-made mapping method

The first problem encountered in this map was the stitching process. Figure 1.4a shows 2

of the problems highlighted in the yellow and red boxes. The yellow box shows that the hallway
has almost doubled in width, which occurred when Turtlebot shifted its map’s coordinate system
during the map making process. A portion of the hallway is long enough to connect with the
hallway on the other side, but they unfortunately do not line up. Another robot-made map of this
section would need to be created and re-inserted to fix this error. The red box shows a section of
the map that was created and was ready to be stitched into the main map. However, as seen in
Figure 1.4b, the two sections in the blue circles should line up. When trying to fit them together
in Gimp, one circle’s corners aligned correctly, while the others did not, and the map was
significantly rotated, preventing it from being stitched in. Therefore, this robot-made map, which
took around an hour to create, would need to be re-done. It will be hard to notice if the error is in
the main map or in the map section that is about to be stitched. If it is the former, the problem
will escalate, and the main map would need to be scratched.

Figure 1.5 Corners that do not match up for the stitching

Secondly, the robot seems to lose its position during cracks or unevenness in the ground.
Figure 1.5 demonstrates how the robot rotated its position from where it should be on the robot-
made map. It is possible for the robot to recover from this rotation, but the recovery rates from
this experimentation do not seem to be high.

The last issue in the robot-made mapping process can be seen in Figure 1.5. The

dimensions of the upper hallway are longer than in reality. The robot’s map shows that it did not
reach the place to turn left, but the robot sees a wall in front of it. This could either be a bot made
map error, if there was a wheel slip during map making, leaving the robot to believe it was in a
different location, or a human-made map stitching error. The robot now cannot drive on this
section of the map because it will not be able to turn the corner. It will get stuck and start rotary
behavior, but it will not be able to recover and find where it needs to go.

Maps created from building floor plan.

 There were two noticeable occurrences that happened when using a converted floor plan
map. First, similar to the robot-made map, the robot tended to lose positions around cracks in the
floor. One difference, however, is that the robot rotated its location and position in the robot-
made map, whereas the robot simply jumped forward on the map in the floorplan map. In both
cases, the robot seemed to not recover.

 The other behavior noticed on the floor plan map was that Turtlebot had trouble
navigating tight corners. Figure 1.2 shows the floorplan. Turtlebot had trouble navigating the
corner highlighted by the blue box. If the route Turtlebot decided was the shortest included
turning the tight corner, it would re-route itself using a different path, but it would ultimately
reach the destination. Turtlebot was able to turn around corners with a ‘T” shape best, but had
more trouble when the corner was an “L” shape (a corner that needs to be taken on this map).
This could not be tested on the robot-made maps because, as stated above, the hallway was
longer in the map than Turtlebot saw in the environment. Turtlebot would not turn this corner of
the other map because when the robot was at the wall, the map told it to go a few feet farther
before turning. This does not occur with the floor plan generated maps because the floor plan is
scaled appropriately in the python script.

2) Leader Follower.

 As a starting point for this portion of the work we require the basic ArUco Tag
identification and location software example provided by The United States Military Academy's
github repository†. Their work was a continuation of other contributions that can be found on
the web. Figure 2.1 shows the published information from the libraries. As can be seen in the
figure, specific tags are identified and that information is published. Moreover, the vector data
for the ArUco tag and its orientation are given as well as the usb camera's vector and direction.
Additionally a distance vector between the two objects is estimated in vector form. The
information is from a capture window using RViz.

† For ArUco Marker detection.see: https://github.com/westpoint-robotics/aruco_ros

Figure 2.1 ArUco tag identification and Vector directions as viewed in RVIZ

 Using ROS and project based learning, a follower routine based on the ArUco software
library (Ladelfa et.al. 2014) was used. This project was slightly more complicated due to the
need for a control algorithm to coordinate the Kobuki's movement with the robot carrying the
symbol it was following. Another complication was that the vector data is not perfect and
required some form of compensation for spurious entries. To that end the student researched and
used a Kalman filter on the vector data. For the actual movement a Proportional Integral
Derivative (PID) controller was used. Once again the student needed to research and understand
how to implement the PID constants, since no mathematical model had been developed and there
wasn't sufficient time to create one. Traditional experimental methods were used to obtain
suitable gain constants. In the end, the Kobuki Turtlebot would follow the marker with good
results provided that the leader did not go too fast or turn too quickly. This leaves open the
possibility for future improvements and additional student work.

 At the start of the semester, one of the students commented that “I had only a basic
understanding of the Linux operating system.” Further, he did not know anything about ROS or
any of the tools that would be needed to implement this portion of the project design. In fact
none of the students had knowledge of many of the sciences that would be required to move
these project forward. Patrick is also the only student that can continue his work in the area for a
second semester due to other academic requirements for graduation. Ultimately we will be
attempting to move the navigation onto a quad copter in the second semester. This is by far a
more difficult task as we will have no localization through GPS while indoors. Originally,
efforts in this area used a Vicon or equivalent system to localize their quad copters. This was
done with great accuracy at the Grasp Lab at U-Penn (Mahony et. al. 2012). Subsequently others
have used cameras and other means to stabilize quad copters for indoor flight. Along those lines
we will use the ArUco tags as visual markers that the quad copter can follow and a sonar device
to control altitude. Hence, this was a logical progression towards our end goal of hovering a
quad indoors (Torn et. al. 2014).

3) RF tags and object Location (Target Tracking and Simple Navigation)

Another challenge undertaken by the students was simple target tracking using computer vision
to locate and scan an RFID tag. By using the on-board Turtlebot camera and an off-the-shelf
RFID reader, the bot can search for distinct objects in a space and navigate towards them. The
bot needed to realize it had reached the target so that the RFID tag could be scanned‡†. This
ability is a useful precursor to localization in navigation tasks as it provides an absolute and
accurate reference for position. Figure 3.1 shows the Kobuki and box it needed to find. The bot’s
navigation was tied to the location observed and the robot moved towards the object until the RF
tag could be detected. In future applications we will include an arm so that the bot can retrieve
the object from the floor. We also made use of color to help find the box and in this work the
boxes were red.

Figure 3.1 Bot and object recognition.

For this application two ROS nodes were used with each running on separate hardware: the
Turtlebot itself and an external laptop to perform the computer vision tasks. On the Turtlebot
node the hardware would continuously scan for an RFID tag, and when discovered, would
publish that information over a ROS topic. The onboard camera information was published onto
its own topic to be processed by the laptop node. This was done to take advantage of the higher
performance and utilize OpenCV††on the laptop node. Figure 3.2 shows the OpenCV vision
recognition of the box. To simplify the task, we started by using a red box and color recognition
to localize the box. In subsequent projects we will use edge detection and shape rather than color
alone further complicating the process and leading to a more indepth understanding of the power
of OpenCV. In general, the bot would rotate on its axis until the target object was seen. Then the
bot would center the object while moving forward. For our application the target was a bright
red box. OpenCV and Python were used to filter the incoming camera data, remove all colors
that were not near the target color, and then perform blob detection to find the likely position of
the box. Based upon the box’s location in the camera screen, velocity commands were sent to the
Turtlebot to move closer to the target. As the blob grew closer the bot would continue forward
until the blob exited the lower part of the screen. At this point the bot would decrease velocity
until the RFID was detected.

‡† See: https://learn.sparkfun.com/tutorials/sparkfun-rfid-starter-kit-hookup-guide
†† See: http://opencv.org/

Figure 3.2 Box location using OpenCV libraries and color recognition.

 Overall the application performed well but the bot movement was not smooth.
Furthermore, a fixed color threshold used for blob detection saw reduced performance if other
similarly colored objects were present. One drawback of this application is the “lag” caused by
the communication between the two nodes. This was necessary because the netbook controller
used with the Turtlebot lacked sufficient computing power to efficiently use the computer vision
algorithm. While the Turtlebot and the laptop were on their own private network, the latency
between the two also cause the bot to overshoot its target. Future efforts for this project will
make sure that each node runs on the same hardware platform thereby ensuring smooth and
accurate operation.

Conclusion

The purpose of this paper was to document the progress we made in one semester toward
projects that would contribute to the growing body of open source work with ROS and the
Kobuki Turtlebot. The students made good progress and their individual projects are being used
by new students in our second semester, with ROS for project based learning. The step by step
details of the students work made it far easier for the second semester students to duplicate and
understand what had been done and use it rapidly. For example, a student this semester is using
the map making details and incorporated voice commands to allow visitors to ask the robot
where a particular office is and have the robot take them to their destination. Another is using
what was learned with the maps to check for open doors after hours. As this is a work in
progress the overall educational experience along with associated details will be detailed by
faculty researchers in a subsequent publication.

In order for this publication to merit consideration we include all of the code with some

instructions on the web (see Table 1 below). Further we have included some instructional videos
on the web and as of this writing they have been viewed approximately 100 times. This is after 3
months of being available. Nonetheless, this data is subjective at best as we do not yet know
who, if any, used these findings to move their projects forward. The details in this publication
will allow others to avoid some of the issues found when using standard Turtlebot routines. It
will also provide an initial source of estimation into the utility of the approach of using ROS and
PBL as an undergraduate research catalyst.

For this initial report all of our original project goals were not realized to the degree we had
hoped. However, the idea to use PBL did prove useful in terms of student motivation and
learning objectives. For this project all of the students were upper level (near graduation),
juniors and senior students. Moreover, they were selected based on prior performance in classes
and projects at the school. This helped our success for this initial attempt of using ROS as an
undergraduate research tool. As we continue to grow our program more data will become
available with regards to freshmen and sophomores that will be included in subsequent faculty
papers. Duplicating this work with no prior knowledge of Ubuntu, ROS or the Turtlebot among
other issues would take any undergraduate student many months to accomplish. These three
students were able to do this using the course of study they described and that is another measure
of merit. Furthermore, the paper provides links to code and instructional videos that the students
made. In the simplest form the Github repositories can be git-cloned onto a ROS enabled Ubuntu
system with the correct libraries and will work immediately. Improvements to all of the
approaches are possible. The details in the paper along with Github examples and videos will
benefit other student programs doing undergraduate research on robots using ROS and PBL.

Table 1. ROS and Turtlebot resources.
Description Link

YCP Robotics ArUco Move Overview https://www.youtube.com/watch?v=C65wWCgdhb8&list=PL8TAyn8Eup
eiqkQE8NklYT6rKvYsEz9pG&index=3

YCP Robotics Map Making Overview https://www.youtube.com/watch?v=mfZfx1gtiBk&list=PL8TAyn8Eupeiq
kQE8NklYT6rKvYsEz9pG&index=4

How to create a ROS Map using a
Buildings Floor Plan

https://www.youtube.com/watch?v=ySlU5CIXUKE

Autonomous Driving Robots with code
by Inputting Coordinates on Map

https://www.youtube.com/watch?v=Vd2fqvcC6MQ

Autonomous Driving With code Basic https://www.youtube.com/watch?v=n8hmtVMMjaQ

Autonomous Robot Driving with RViz
and Turtlebot

https://www.youtube.com/watch?v=bx5-dwQnZzA

Creating a Robot-Made Map in ROS https://www.youtube.com/watch?v=pXllj9Q1bE0

Map Making Python code https://drive.google.com/file/d/0B2AcDRX3bKLVdjhPU1B2UUNRaDA/
view

GitHub ArUco Move Repository https://github.com/plynn17/Aruco_move_ros_pkg
ROS-RFID Finder Repository https://github.com/mrjones2014/ROS-RFID-Finder

References

1. Quigley, Morgan, et al. "ROS: an open-source Robot Operating System." ICRA workshop
on open source software. Vol. 3. No. 3.2. 2009.

2. Cousins, Steve, et al. "Sharing software with ros [ros topics]." IEEE Robotics &
Automation Magazine 17.2 (2010): 12-14.

3. Martinez, Aaron, and Enrique Fernández. Learning ROS for robotics programming.

Packt Publishing Ltd, 2013.
4. Qidwai, Uvais. "Fun to learn: Project-based learning in robotics for computer engineers."

ACM Inroads 2.1 (2011): 42-45.
5. O'Kane, Jason M. "A gentle introduction to ros." (2014): 1564.
6. Ghani, Muhammad Fahmi Abdul, Khairul Salleh Mohamed Sahari, and Loo Chu Kiong.

"Improvement of the 2D SLAM system using Kinect sensor for indoor mapping." Soft
Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on
and Advanced Intelligent Systems (ISIS), 15th International Symposium on. IEEE, 2014.

7. Schmitt, Simon, et al. "A reference system for indoor localization testbeds." Indoor
Positioning and Indoor Navigation (IPIN), 2012 International Conference on. IEEE,
2012.

8. Sumaray, Audie, and S. Kami Makki. "A comparison of data serialization formats for
optimal efficiency on a mobile platform." Proceedings of the 6th international
conference on ubiquitous information management and communication. ACM, 2012.

9. La Delfa, Gaetano Carmelo, and Vincenzo Catania. "Accurate indoor navigation using
smartphone, bluetooth low energy and visual tags." Proc. 2nd Conf. on Mobile and
Information Technologies in Medicine. 2014.

10. Mahony, Robert, Vijay Kumar, and Peter Corke. "Multirotor aerial vehicles." IEEE
Robotics and Automation magazine 20.32 (2012).

11. Toma, Antonio, et al. "The Vision-Based Terrain Navigation Facility: A Technological
Overview." International Workshop on Modelling and Simulation for Autonomous
Systems. Springer International Publishing, 2014.

