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A Student Project using Robotic Operating System (ROS)  
for Undergraduate Research  

 In this student led undergraduate research paper we present a robotics project using the 
Robot Operating System (ROS).  The purpose of this student paper is to document their learning 
path and steps taken for a project using three related, yet independent student projects so that 
others might benefit from the details.  The students worked together initially to learn enough 
about ROS and it's development environment so that they might employ it.  Thus far the use of 
ROS has primarily been focused on graduate studies where improvements to the underlying 
algorithms and techniques have been made.  In this undergraduate approach no such attempts are 
made in improving the foundation algorithms already developed by top researchers and schools.  
Rather, the students employed published techniques to provide the foundation of their work.  
Specifically, the project used the Turtle-bot architecture and modules within ROS to create the 
components of a cooperative robotic mission.  The crux of the mission is for one of the robots to 
autonomously explore and map an area of the engineering building while leaving bread-crumbs 
behind for another robot to follow.  A third robot comes behind the second and uses the 
information from the first two to locate tags distributed throughout the building. Each student 
made a portion of this project, that could stand alone, so that others could use these individual 
modules and details for their own projects without redoing what had been done here.  The three 
parts were broken into mapping, tag recognition with robot leader follower operations, and 
object location and RF tag reading.  It enabled students to use the existing sensors on the turtle-
bot, while incorporating new devices to complete their particular missions.  In this paper the 
students detail the learning path that was required to bring their individual technologies for their 
sub project to fruition. Using their initial code and techniques will enable others to duplicate and 
expand at a quicker pace.  We have already seen this in the second semester as new students are 
tackling tasks of increased difficulty building on what was done here.  Furthermore, the students 
detail the methods used and the code that they wrote to accomplish the tasks described.  Finally, 
the students identified the technologies required to learn and the research they did as a criteria of 
merit.  Additionally, a series of Youtube instructional videos and a file repository are available 
for others to use.  All of the code developed is given on google drives and GitHub for others to 
use and is referenced at the end of this paper. 
 
Introduction 
 
 One of the difficulties with robotics is that it usually requires intricate knowledge of 
hardware level details in order to even begin developing robotic systems (Quigley 2009). 
Whether it's communicating with motor controllers, utilizing servos, interfacing with sensors or 
implementing hardware acceleration for improved computing, learning robotics often requires 
graduate level knowledge of these topics. This means that some robotics topics and capability



can be out of reach for most undergraduates, due to its steep learning curve.  Fortunately, ROS 
has numerous libraries and “how to examples” making it easy for students to learn and exchange 
examples (Cousins et. al. 2010). When robotics is applied to a problem such as navigating a 
hallway in order to deliver a soda to someone, or following a known target, these problems are 
well suited for undergraduates.  How the robot’s environment influences its decision-making is a 
problem that can be researched and tackled by undergraduates. So, it would be beneficial to have 
a way to work with robots that was within the grasps of undergraduate studies. The algorithms 
and theory surrounding tasks involving in-depth knowledge of the hardware and software 
systems are all taken care of by ROS. This is the void that ROS fills. ROS simplifies robotics by 
abstracting away the hardware/software level issues and allows robotic engineers to focus 
directly on solving problems. ROS does this by utilizing Ubuntu as an operating system and 
implementing a set of common libraries that allows programmers to easily get robots to 
communicate with other ROS enabled devices.  This simplifies the process for adding 
functionality to a robot, including its sensory equipment or servo motors. ROS requires much 
less knowledge to learn than diving right into hardware level details and therefore, ROS makes 
the learning curve much more manageable for undergraduates (Martinez et. al. 2013). 
 
 When you couple ROS with project learning (Qidwai 2011) you create an environment for 
undergraduate computer engineer to really expand their understanding of computation systems 
and utilize much of the engineering theory that has been learned in class. With project based 
learning the student gains a more complete understanding of the problem by necessity, because 
they are the only one working on the project. This means that the student fully conceptualizes the 
problem set in order to solve it, often leading the student to becoming some what of an expert of 
the topics involved. Furthermore, project based learning allows students to learn at their own 
pace. Since students do not all learn at the same rate, project based learning allows students to be 
unhindered by pacing issues that are commonplace in traditional classroom settings. But most 
importantly, project based learning mirrors industry, which forces the student to apply theory in a 
pragmatic way. In industry you are not given monthly tests in order to prove your understanding; 
in industry you tackle projects, in teams or individually, focusing on the task at hand until the 
problem is solved. This is the part of industry that project based learning best represents and is its 
most valuable asset. 
 
 In order to get everyone on the same page, a course of study was undertaken to familiarize 
students with the basic tools needed in this independent study project.  In some cases the students 
had no prior experience with linux, ubuntu, and had never heard of ROS or the Turtlebot/Kobuki.  
To do this the first 6 weeks were spent doing the following: 
 

• Learn Linux, Ubuntu, ROS Setup.  
 
 To this end, students rebuilt the ubuntu laptops that ran the Turtlebots.  They needed to 
build from scratch the OS using ubuntu 14.04 and then load ROS, Turtlebot and other associated 
libraries on the laptops.  We had two different Asus laptops for this purpose that were both 32 bit 
systems and 64 bit systems.  Initially the students used the existing school wireless network to 
run their experiments.  However, it became obvious that this was insufficient and an independent 
robot only network was built by the students for robot experiments. 
 



• Learn the Robotic Operating System (ROS) and its development environment by 
developing applications in C++ or Python. 
 
 For this portion we employed the book “A Gentle Introduction to ROS,” (O'Kane 2014). 
Students worked through the chapters in the first couple of weeks; this gave them the ability to 
write both C++ and Python programs that accessed the information within the publisher 
subscriber ROS environment.  This course of study also enabled the students to better understand 
the tutorial examples that were available online.  Without this asset it would have been difficult 
to fully understand the Turtlebot examples or how to access ROS topics, messages and other 
vital information within the ROS framework.   
 

• Learn how others have built ROS enabled programs for robotic systems by 
recreating and extending several existing github ROS examples.  
 
 For this portion we relied on internet examples.  In particular the Turtlebot has a number 
of tutorials on learning Turtlebot†.  Additionally they have a series of challenges to further 
understanding of the Turtlebot.  However, these tutorials are step by step examples that do not 
really teach you the workings of ROS, the Turtlebot, or how the publisher subscriber works.  It is 
our assertion here that becoming proficient with writing publisher subscriber programs, launch 
files and the like can only be accomplished through examination of the details of the programs 
needed to support program development.  ROS is more than just a library and includes a central 
server, command line tools, graphical tools and a build system.  Our hypothesis is by combining 
several resources ROS can be used  for undergraduate research efficiently. What follows here are 
the three projects that make up our overall goal stated in the beginning of this paper.   
 
Individual projects: 
 

1. Map making. 
 

The Kobuki Turtlebot, a robot that relies on a relative coordinate system and dead 
reckoning to drive autonomously using a blueprint map so the robot knows its location and 
destination. The Turtlebot will simultaneously and computationally construct a map of the 
environment, as well as its known relative position, in accordance with its location, by using 
Simultaneous Localization And Mapping (SLAM) (Ghani et. al. 2014).  Turtlebot uses the 
SLAM algorithm called GMapping.  Using GMapping, the robot analyzes an existing map to 
find the best route to get to a destination(Schmidt et. al. 2012). If multiple routes exist there are 
existing algorithms to help the robot make a decision.     

 
In this paper, we document our findings of the many deficiencies in this method of 

“Robot-made” mapping, and then we propose a method that does not have these same 
deficiencies.  We present a method where the floor plan could be converted to the map file 
format that the robot understands. If a raster image of the floor plan exists, then this process will 
work. The time consuming issues and lack of accuracy problems found with robot-made 
mapping is eliminated. We will also compare how the robot drives and performs on the maps 
generated from both map generation types.  
                                                             
†  Turtlebot learning: http://learn.Turtlebot.com/  



 
Robot made map 
 

Creating a robot-made map is a 4 step process. First, the user loads the GMapping demo 
software. Second, RViz, Turtlebot’s front-end live map visualization tool, needs to be loaded so 
the user can visualize the map as they create it (See http://learn.Turtlebot.com/2015/02/01/11/ for 
more details). Third, the user drives the Turtlebot around the desired environment until the user 
is satisfied with the map coverage, as seen in RViz‡†. Lastly, the user saves the map to the 
desired location in the computer’s file system. This last step creates and saves the map with the 
output in the form of a “pgm” image of the map, as well as a “yaml”(Yet Another Markup 
Language) configuration file (Sumaray et. al. 2012).  The “pgm” is an image that shows the 
blueprint of the environment that the Turtlebot just traversed, and the “yaml” file is the 
configuration file for the map. The “yaml” file is also used to load a map onto the Turtlebot, 
linking the “pgm” blueprint, as well as the other meta information. The “yaml” contains 
information such as the base path of the “pgm” blueprint associated with the “yaml,” the origin 
(the coordinates of the Turtlebot when the map making process began), and the image resolution.  

 
Maps made by Turtlebot using GMapping are far from perfect. When viewing the map 

being made in RViz, the user can sometimes see the map rotate at an angle or shift, either 
horizontally or vertically, in the middle of making a map. This can be due to the robot’s 
“confusion” from poor odometry. If the robot’s wheels slip in the middle of making a map, the 
new distance between the map origin and the current position is not equivalent. The robot will 
now believe that it is ‘x’ amount of wheel turns ahead of its actual physical position. In addition, 
depending on the camera, depth sensors, and laser range finders used on the robot, the accuracy 
of the robot-made map will vary. Furthermore, when driving the Turtlebot around, the user will 
see that the map will have missing sections that the robot does not see, as shown in Figure 1.1. 
The user will need to drive the robot over the missing map section many times before the robot 
recognizes the spot. The Turtlebot odometry was poorest when Turtlebot drives slowly over 
slippery cement floors, so in similar conditions the user should try to ensure to move at a decent 
pace when making the map. They should drive the perimeter first, and then finish in the middle 
of the hallway or room. Turtlebot uses dead reckoning to match up places and objects it has seen 
in relation to its current position.  

Figure 1.1 Robot-made map created with GMapping  
illustrating the gaps made in the middle of the map. 

                                                             
‡† RViz is a GUI used by ROS applications for more info see: http://wiki.ros.org/rviz/Tutorials  



 
Another potential disadvantage of creating a robot-made map is that it can be very time 

consuming if the user is attempting to make a large map. In the section of map in the blue box in 
Figure 1.3, a relatively small hallway took about a half hour to create by driving the robot 
around. The whole map shown in Figure 1.3 is only the section of map in the red box in Figure 
1.2, the entire floor plan. That red box only encompasses the portion of the hallways that are the 
perimeters around the map, and it does not include the rooms. The rooms in the middle were not 
mapped in this process. The perimeter took approximately 4 hours to map by robot. By 
extrapolation, the entire floor plan would take around 40 hours. Therefore, the user should 
consider the battery lifetime for the robot, robot laptop, and user laptop when creating the map. 
In this case, small areas of the map should be completed at a time. Photo-editing software, such 
as Gimp on Linux, can be used to stitch the multiple map sectors together to create a large master 
map, although this introduces human error as well as bot error, and a new “yaml” file will need 
to be created in this case for the new map. In addition, if the accuracy of the bot map is poor, or a 
map shift occurs and is not recognized and fixed during the map creation, then stitching portions 
of the map together will not be possible. That sector will need to be re-mapped and re-stitched 
together. However, a shifted map may be stitched in the beginning, and the user may not realize 
that the basis of the master map is now distorted, which is very plausible depending on the floor 
layout being mapped. It is also possible that a newly inserted map section could be correctly 
mapped, but may not fit into the current master map because of the original shifted map. This can 
get the user stuck in a loop, not knowing which sectors are correctly mapped and inserted into 
the stitched map.  
 

  Figure 1.2 Floor Plan Map                             Figure 1.3 Robot-Made Map 
 
Using a building floor-plan to create a ROS map. 
 

If the user has access to a floor plan of the building, it could be converted into the 
appropriate “pgm” and “yaml” that the robot reads as a map; then the time consuming and lack 
of accuracy issues would be eliminated.  We created a python program, MakeROSMap.py‡, that 
is designed to allow the user to input a floor plan of any picture type (“jpeg”, “png”, etc.), and 
then the program will convert these pictures into a ROS map (the “pgm” and “yaml” files) 

                                                             
‡ To download code see: https://drive.google.com/file/d/0B2AcDRX3bKLVdjhPU1B2UUNRaDA/view  



needed by Turtlebot.  The user provides the program with 4 (x, y) coordinates: 2 in the x 
direction and 2 in the y direction. The user then inputs the x and y distances between the two 
points in order for the program to scale the floor plan correctly. Without appropriate map scaling, 
the Turtlebot will be at a different point on the map displayed in RViz than in its actual 
environment. The map needs to be scaled to the Turtlebot’s environment (See 
https://www.youtube.com/channel/UCQgDH1KtuoDZkafNM0QiC-A for additional details). 
Furthermore, the program will output a “yaml” file for the user to associate with the map. 

 
There are two main concepts to note when running this program. First, when selecting the 

two coordinate points, for both x and y, the user should ensure that the points selected are linear 
with respect to each other. The code then calculates the distance between the two points, 
assuming the points are horizontal and vertical to one-other. Without this close linear 
approximation, the map will not be scaled appropriately to the map’s physical location. Second, 
the program will ask the user where to save the program’s output (the map “pgm” and “yaml”), 
and it will save it to that location. If the program is not run on the Turtlebot laptop, the “pgm” 
and “yaml” files will be saved to the right location on the file system on which the program is 
run, but it will be on the wrong computer. When loading a map onto Turtlebot, the map must 
reside on Turtlebot for it to work accurately. The user needs to save the program output to the 
desired location, and then transfer the output to the Turtlebot. This will allow for the program to 
write the correct data to the “yaml” file.  

 
Map options comparison. 
 

Based on our test results, creating a map from a building’s floor plan is much quicker 
than creating a robot-made map using SLAM and GMapping.  We found that it will take the user 
only a few minutes to input the original floor plan and have a completed ROS map converted and 
resized. As stated above, creating a map by driving the robot around can take many hours, 
whereas running this program can take less than 5 minutes.  To determine which type of map, 
either a robot-made map or a floor plan map, the robot drives better on, the Turtlebot was sent to 
different locations separately on both maps, and the performance was analyzed.   

 
On the robot-made map, Turtlebot drove rather well despite its imperfections. Our 

observations show that the Turtlebot relies on both cameras and sensors in addition to the map, 
leading for the performance to be better than if Turtlebot was relying solely on the map. There 
are 3 main problems that were observed when driving Turtlebot on this robot-made map. The 
maps shown in Figures 1.4a,b were previously edited in Gimp as explained earlier. Any missing 
gaps were filled in and small sections of the map were stitched together to create a master robot-
made map.  



 
Figures 1.4 a,b Highlighting problems encountered in the robot-made mapping method 

 
The first problem encountered in this map was the stitching process. Figure 1.4a shows 2 

of the problems highlighted in the yellow and red boxes. The yellow box shows that the hallway 
has almost doubled in width, which occurred when Turtlebot shifted its map’s coordinate system 
during the map making process. A portion of the hallway is long enough to connect with the 
hallway on the other side, but they unfortunately do not line up. Another robot-made map of this 
section would need to be created and re-inserted to fix this error. The red box shows a section of 
the map that was created and was ready to be stitched into the main map. However, as seen in 
Figure 1.4b, the two sections in the blue circles should line up. When trying to fit them together 
in Gimp, one circle’s corners aligned correctly, while the others did not, and the map was 
significantly rotated, preventing it from being stitched in. Therefore, this robot-made map, which 
took around an hour to create, would need to be re-done. It will be hard to notice if the error is in 
the main map or in the map section that is about to be stitched. If it is the former, the problem 
will escalate, and the main map would need to be scratched.  

 

Figure 1.5 Corners that do not match up for the stitching 
 

Secondly, the robot seems to lose its position during cracks or unevenness in the ground. 
Figure 1.5 demonstrates how the robot rotated its position from where it should be on the robot-
made map. It is possible for the robot to recover from this rotation, but the recovery rates from 
this experimentation do not seem to be high.  

 
The last issue in the robot-made mapping process can be seen in Figure 1.5. The 



dimensions of the upper hallway are longer than in reality. The robot’s map shows that it did not 
reach the place to turn left, but the robot sees a wall in front of it. This could either be a bot made 
map error, if there was a wheel slip during map making, leaving the robot to believe it was in a 
different location, or a human-made map stitching error. The robot now cannot drive on this 
section of the map because it will not be able to turn the corner. It will get stuck and start rotary 
behavior, but it will not be able to recover and find where it needs to go.  

 
Maps created from building floor plan. 
  
 There were two noticeable occurrences that happened when using a converted floor plan 
map. First, similar to the robot-made map, the robot tended to lose positions around cracks in the 
floor. One difference, however, is that the robot rotated its location and position in the robot-
made map, whereas the robot simply jumped forward on the map in the floorplan map. In both 
cases, the robot seemed to not recover.  
 
 The other behavior noticed on the floor plan map was that Turtlebot had trouble 
navigating tight corners. Figure 1.2 shows the floorplan. Turtlebot had trouble navigating the 
corner highlighted by the blue box. If the route Turtlebot decided was the shortest included 
turning the tight corner, it would re-route itself using a different path, but it would ultimately 
reach the destination. Turtlebot was able to turn around corners with a ‘T” shape best, but had 
more trouble when the corner was an “L” shape (a corner that needs to be taken on this map). 
This could not be tested on the robot-made maps because, as stated above, the hallway was 
longer in the map than Turtlebot saw in the environment. Turtlebot would not turn this corner of 
the other map because when the robot was at the wall, the map told it to go a few feet farther 
before turning. This does not occur with the floor plan generated maps because the floor plan is 
scaled appropriately in the python script.  
 

2) Leader Follower. 
 
 As a starting point for this portion of the work we require the basic ArUco Tag 
identification and location software example provided by The United States Military Academy's 
github repository†.  Their work was a continuation of other contributions that can be found on 
the web.  Figure 2.1 shows the published information from the libraries.  As can be seen in the 
figure, specific tags are identified and that information is published.  Moreover, the vector data 
for the ArUco tag and its orientation are given as well as the usb camera's vector and direction.  
Additionally a distance vector between the two objects is estimated in vector form.  The 
information is from a capture window using RViz. 

                                                             
†  For ArUco Marker detection.see: https://github.com/westpoint-robotics/aruco_ros   



 
Figure 2.1 ArUco tag identification and Vector directions as viewed in RVIZ 

 
 Using ROS and project based learning, a follower routine based on the ArUco software 
library (Ladelfa et.al. 2014) was used. This project was slightly more complicated due to the 
need for a control algorithm to coordinate the Kobuki's movement with the robot carrying the 
symbol it was following.  Another complication was that the vector data is not perfect and 
required some form of compensation for spurious entries.  To that end the student researched and 
used a Kalman filter on the vector data.  For the actual movement a Proportional Integral 
Derivative (PID) controller was used.  Once again the student needed to research and understand 
how to implement the PID constants, since no mathematical model had been developed and there 
wasn't sufficient time to create one. Traditional experimental methods were used to obtain 
suitable gain constants. In the end, the Kobuki Turtlebot would follow the marker with good 
results provided that the leader did not go too fast or turn too quickly.  This leaves open the 
possibility for future improvements and additional student work.   
 
 At the start of the semester, one of the students commented that “I had only a basic 
understanding of the Linux operating system.”  Further, he did not know anything about ROS or 
any of the tools that would be needed to implement this portion of the project design. In fact 
none of the students had knowledge of many of the sciences that would be required to move 
these project forward.  Patrick is also the only student that can continue his work in the area for a 
second semester due to other academic requirements for graduation.  Ultimately we will be 
attempting to move the navigation onto a quad copter in the second semester.  This is by far a 
more difficult task as we will have no localization through GPS while indoors.  Originally, 
efforts in this area used a Vicon or equivalent system to localize their quad copters.  This was 
done with great accuracy at the Grasp Lab at U-Penn (Mahony et. al. 2012).  Subsequently others 
have used cameras and other means to stabilize quad copters for indoor flight.  Along those lines 
we will use the ArUco tags as visual markers that the quad copter can follow and a sonar device 
to control altitude.  Hence, this was a logical progression towards our end goal of hovering a 
quad indoors (Torn et. al. 2014).   
 

3) RF tags and object Location (Target Tracking and Simple Navigation) 



 
Another challenge undertaken by the students was simple target tracking using computer vision 
to locate and scan an RFID tag. By using the on-board Turtlebot camera and an off-the-shelf 
RFID reader, the bot can search for distinct objects in a space and navigate towards them. The 
bot needed to realize it had reached the target so that the RFID tag could be scanned‡†. This 
ability is a useful precursor to localization in navigation tasks as it provides an absolute and 
accurate reference for position. Figure 3.1 shows the Kobuki and box it needed to find. The bot’s 
navigation was tied to the location observed and the robot moved towards the object until the RF 
tag could be detected.  In future applications we will include an arm so that the bot can retrieve 
the object from the floor.  We also made use of color to help find the box and in this work the 
boxes were red. 
 

Figure 3.1 Bot and object recognition. 
 
For this application two ROS nodes were used with each running on separate hardware: the 
Turtlebot itself and an external laptop to perform the computer vision tasks. On the Turtlebot 
node the hardware would continuously scan for an RFID tag, and when discovered, would 
publish that information over a ROS topic. The onboard camera information was published onto 
its own topic to be processed by the laptop node. This was done to take advantage of the higher 
performance and utilize OpenCV††on the laptop node. Figure 3.2 shows the OpenCV vision 
recognition of the box.  To simplify the task, we started by using a red box and color recognition 
to localize the box.  In subsequent projects we will use edge detection and shape rather than color 
alone further complicating the process and leading to a more indepth understanding of the power 
of OpenCV. In general, the bot would rotate on its axis until the target object was seen. Then the 
bot would center the object while moving forward.  For our application the target was a bright 
red box. OpenCV and Python were used to filter the incoming camera data, remove all colors 
that were not near the target color, and then perform blob detection to find the likely position of 
the box. Based upon the box’s location in the camera screen, velocity commands were sent to the 
Turtlebot to move closer to the target. As the blob grew closer the bot would continue forward 
until the blob exited the lower part of the screen. At this point the bot would decrease velocity 
until the RFID was detected. 
 

                                                             
‡† See: https://learn.sparkfun.com/tutorials/sparkfun-rfid-starter-kit-hookup-guide  
†† See: http://opencv.org/  



 

Figure 3.2 Box location using OpenCV libraries and color recognition. 
 
 Overall the application performed well but the bot movement was not smooth. 
Furthermore, a fixed color threshold used for blob detection saw reduced performance if other 
similarly colored objects were present. One drawback of this application is the “lag” caused by 
the communication between the two nodes. This was necessary because the netbook controller 
used with the Turtlebot lacked sufficient computing power to efficiently use the computer vision 
algorithm. While the Turtlebot and the laptop were on their own private network, the latency 
between the two also cause the bot to overshoot its target. Future efforts for this project will 
make sure that each node runs on the same hardware platform thereby ensuring smooth and 
accurate operation. 
 
Conclusion 
 

The purpose of this paper was to document the progress we made in one semester toward 
projects that would contribute to the growing body of open source work with ROS and the 
Kobuki Turtlebot.  The students made good progress and their individual projects are being used 
by new students in our second semester, with ROS for project based learning.  The step by step 
details of the students work made it far easier for the second semester students to duplicate and 
understand what had been done and use it rapidly.  For example, a student this semester is using 
the map making details and incorporated voice commands to allow visitors to ask the robot 
where a particular office is and have the robot take them to their destination.  Another is using 
what was learned with the maps to check for open doors after hours.   As this is a work in 
progress the overall educational experience along with associated details will be detailed by 
faculty researchers in a subsequent publication.   

 
In order for this publication to merit consideration we include all of the code with some 

instructions on the web (see Table 1 below).  Further we have included some instructional videos 
on the web and as of this writing they have been viewed approximately 100 times.  This is after 3 
months of being available. Nonetheless, this data is subjective at best as we do not yet know 
who, if any, used these findings to move their projects forward. The details in this publication 
will allow others to avoid some of the issues found when using standard Turtlebot routines. It 
will also provide an initial source of estimation into the utility of the approach of using ROS and 
PBL as an undergraduate research catalyst.   



 
For this initial report all of our original project goals were not realized to the degree we had 
hoped.  However, the idea to use PBL did prove useful in terms of student motivation and 
learning objectives.  For this project all of the students were upper level (near graduation), 
juniors and senior students. Moreover, they were selected based on prior performance in classes 
and projects at the school.  This helped our success for this initial attempt of using ROS as an 
undergraduate research tool. As we continue to grow our program more data will become 
available with regards to freshmen and sophomores that will be included in subsequent faculty 
papers.  Duplicating this work with no prior knowledge of Ubuntu, ROS or the Turtlebot among 
other issues would take any undergraduate student many months to accomplish. These three 
students were able to do this using the course of study they described and that is another measure 
of merit. Furthermore, the paper provides links to code and instructional videos that the students 
made. In the simplest form the Github repositories can be git-cloned onto a ROS enabled Ubuntu 
system with the correct libraries and will work immediately. Improvements to all of the 
approaches are possible. The details in the paper along with Github examples and videos will 
benefit other student programs doing undergraduate research on robots using ROS and PBL.  

 
 

Table 1. ROS and Turtlebot resources. 
Description Link 

YCP Robotics ArUco Move Overview https://www.youtube.com/watch?v=C65wWCgdhb8&list=PL8TAyn8Eup
eiqkQE8NklYT6rKvYsEz9pG&index=3  

YCP Robotics Map Making Overview https://www.youtube.com/watch?v=mfZfx1gtiBk&list=PL8TAyn8Eupeiq
kQE8NklYT6rKvYsEz9pG&index=4  

How to create a ROS Map using a 
Buildings Floor Plan  

https://www.youtube.com/watch?v=ySlU5CIXUKE  

Autonomous Driving Robots with code 
by Inputting Coordinates on Map  

https://www.youtube.com/watch?v=Vd2fqvcC6MQ  

Autonomous Driving With code Basic  https://www.youtube.com/watch?v=n8hmtVMMjaQ  

Autonomous Robot Driving with RViz 
and Turtlebot  

https://www.youtube.com/watch?v=bx5-dwQnZzA  

Creating a Robot-Made Map in ROS  https://www.youtube.com/watch?v=pXllj9Q1bE0  

Map Making Python code https://drive.google.com/file/d/0B2AcDRX3bKLVdjhPU1B2UUNRaDA/
view  

GitHub ArUco Move Repository https://github.com/plynn17/Aruco_move_ros_pkg  
ROS-RFID Finder Repository https://github.com/mrjones2014/ROS-RFID-Finder  
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