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Abstract. Human activity recognition (HAR) has been adopting deep
learning to substitute well-established analysis techniques that rely on
hand-crafted feature extraction and classication techniques. However, the
architecture of convolutional neural network (CNN) models used in HAR
tasks still mostly uses VGG-like models while more and more novel archi-
tectures keep emerging. In this work, we present a novel approach to
HAR by incorporating elements of residual learning in our ResNet-like
CNN model to improve existing approaches by reducing the computa-
tional complexity of the recognition task without sacrificing accuracy.
Specifically, we design our ResNet-like CNN based on residual learning
and achieve nearly 1% better accuracy than the state-of-the-art, with
over 10 times parameter reduction. At the same time, we adopt the
Saliency Map method to visualize the importance of every input chan-
nel. This enables us to conduct further work such as dimension reduction
to improve computational efficiency or finding the optimal sensor node(s)
position(s).

Keywords: Human activity recognition (HAR) · Convolutional neural
network (CNN) · ResNet · Saliency map

1 Introduction

Human activity recognition (HAR) has recently been a research hot spot, attract-
ing not only crowds of researchers but also plenty of funds. HAR methodologies
have gotten very competent at recognizing human activities directly from raw
sensor signals, which has wide applications including home behavior analysis
[23], ubiquitous computing [7], health monitoring [18], etc. There are mainly
two types of HAR [2]: video-based and sensor-based. We will focus on sensor-
based here because of he simplicity of one-dimensional time series data and the
privacy concerns it addresses.

There are mainly two types of HAR [3]: video-based and sensor-based. Video-
based HAR analyzes videos of humans performing activities in front of a cam-
era. It conforms to our intuition for recognizing human activities but suffers
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from many problems, like the complexity to process high-dimensional data, the
reliance on environmental illumination, and the need for fixing the position of
camera. At the same time, sensor-based HAR can process data from various
sensors, such as accelerometer, gyroscope, magnetometer, Bluetooth, and other
sensors. Although it requires users to wear some kind of special equipment, the
simplicity of 1-dimensional time series data and the privacy concerns it addresses
make it popular. There are also works on using mobile phones or smart watches
as sensors, which makes it even more convenient. Therefore, in this paper, we
will focus on sensor-based HAR.

In general, HAR can be treated as a typical pattern recognition prob-
lem where machine learning is very effective [2]. Conventional HAR methods
adopt machine learning algorithms such as decision tree, support vector machine
(SVM), naive Bayes and hidden Markov models as classifiers. However, a main
problem is the heavy reliance on hand-crafted feature extraction which is con-
strained to the knowledge of the practitioner. Furthermore, the learnt features
are always shallow and unable to generalize, which means there is no universal
solution to every dataset. Due to these limitations, traditional HAR methods
are restricted both in accuracy and generalization ability.

Recent years have witnessed the rise and rapid development of deep learn-
ing [13], which have achieved unparalleled performance in computer vision [12],
natural language processing [1] and speech processing [9]. As a representation
learning method, it can automatically learn deep features which are most use-
ful for classification without any hand-crafted preprocessing. This advancement
improves over traditional methods where the hand-crafted features are required.
In [24], authors report about the existing works and future directions at the
intersection of deep learning and HAR.

One of the most prominent deep learning methods are convolutional neu-
ral networks (CNN). The models are attractive in their ability to exploit spatial
information inside datasets and were first used to classify images. Extending this
ability to HAR, these approaches can exploit the time correlation between adja-
cent points in one-dimensional (1D) time series data [4,6,17,22,26,27]. However,
while CNN structures in the computer vision field keep evolving, from AlexNet
[12] to VGGnet [20], Inception [21], ResNet [8], DenseNet [11], MobileNet [10],
and other advanced models with better performance and efficiency, the main
structure of CNN in HAR field has been stuck in VGG-like model. Therefore, it
is necessary to explore the possibility of applying the advancement of structures
from visual field to HAR tasks.

Among diverse novel CNN structures, ResNet is one of the most commonly
used and is highest performing. It won the first place of ILSVRC-2015 and
was awarded the best paper of CVPR in 2016 [8] and was followed by many
variants. It is serving as the main structure of many visual tasks like image
classification, object recognition, semantic segmentation and so on. Although
it is originally designed for images, the core idea - residual learning can be
easily transplanted into one-dimensional CNN designing. In this work, we have
developed a novel structure based on the same idea of ResNet for HAR. We have
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tested it on mainstream dataset OPPORTUNITY [3] and achieved nearly 1%
better in accuracy than even the best networks to our knowledge, with over 10
times parameter reduction.

Without architecture, another essential question is that where we should put
the sensor to recognize the human activity better. We creatively transplant a
method called Saliency Map [19] to directly visualize the importance of every
channel to the final result. Saliency Map comes from image classification field
and is used to visualize which part inside the image contributes most to the
classification result. The same method used here can help us find out the most
important sensor without training many times or trying different combinations.

In summary, the contributions of this work are as follows:

– We put forward a novel ResNet-like CNN structure for HAR tasks with
improved performance.

– The network we designed has significantly fewer parameters which is capable
for more efficient computing.

– We use Saliency Map to directly visualize the importance of every input
channel.

The rest of the paper is organized as follows. We discuss related work in
Sect. 2. The details of our three contributions are presented in Sect. 3 (ResNet-
like structure) and Sect. 4 (Saliency Map usage). The conducted experiments
and results are discussed in Sect. 5. Section 6 concludes the paper and lays out
potential future work.

2 Related Work

In this section, we discuss related works and contrast them with ours. Section
2.1 discusses previous works which also apply CNNs for HAR and their flaws.
Section 2.2 introduces the origination of ResNet and how this residual learning
idea influences our work. Section 2.3 introduces the application of Saliency Map
in Computer Vision field and how it can be converted into HAR.

2.1 CNNs for HAR

As presented before, CNN has become a wide-spread tool for HAR in recent
years. To our knowledge, [27] was the first work using CNN to process time series
data. It treated every channel like RGB of an image but did the convolution and
pooling separately, which may be considered unreasonable today. This mistake
is corrected in [26], which proposed to share weights in 1D multi-channel convo-
lution. Along with this basis, [4] did some experiments to find the optimal kernel
size for HAR data. [6] did a comprehensive comparison of deep learning models
for HAR, including DNN, CNN, RNN and hybrid models. Some very recent work
still follows the pattern, with the changing from common filters to Lego filters
[22], improving the computational efficiency for mobile applications. However,
all these networks share the same main structure, only varying in number of
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layers or kernels. It is necessary to explore novel architectures, like employing
skip connections, which is essential in state-of-the-art CNN network designing.
It is worth noting that there are some works using CNN+LSTM architectures
[15,25], which have higher accuracy than our architecture. However, since CNN
part and LSTM part are independent to each other, the simple structure of CNN
can be easily replaced with our version and it should achieve better results.

2.2 ResNet

ResNet originated from [8] and have become one of the most wide-spread archi-
tectures for deep learning networks. The core idea is residual learning, which
uses shortcut connections to ease learning complexity and strengthen gradient
flow. However, the original network is for 2D pictures and cannot be directly
used in HAR, so we followed the core idea of residual learning and developed
our new architecture for 1D time series data. Our new architecture is based on
Res Block which is designed according to residual learning concept.

2.3 Saliency Map

Saliency Map [19] comes from Image Classification field and is put forward to
answer the question that which part of the picture contributes most to the final
classification result. There is a similar question in HAR field that which sensor
is most useful or where is the optimal position of sensor to achieve best per-
formance with fewest sensors. Therefore, we developed a 1D version of Saliency
Map to visualize the importance of every input channel, which could be used for
dimensionality reduction further.

3 ResNet-Like Structure

This section has a detailed description of the basic idea of residual learning and
our novel network which employed similar residual learning idea. The concept
of residual learning is discussed in Sect. 3.1 and the network architecture in
Sect. 3.2.

3.1 Residual Learning

Our architecture shares the same basic idea with ResNet – residual learning.
According to the CNN network designing principles, the architecture of a net-
work should be based on stacking of similar blocks, in order to simplify parameter
tuning and prevent from overfitting specific dataset and leading to low general-
ization ability. Therefore, we will explain our network design and theory behind
through blocks.

The mathematical model of Residual Blocks can be shown in one line of
formula:

yl = F (xl) + xl (1)
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Here yl denotes the output feature to the l-th residual block and xl is the
input. F (·) denotes residual function and is always stacks of convolutional layers.
Instead of directly learning the mappingH(x) from input to output in traditional
CNN models, the convolutional part of residual block learns F (x) = H(x) − x.
It can be seen as a shortcut connection from input to output.

The advantages of introducing shortcut connection can be understood in
three perspectives.

First, the complexity of learning is reduced, especially when the features
generated by current layer is fine-tuning of last layer‘s, which happens mostly in
deeper networks. Take identity mapping y = x for example. In traditional CNN
networks, you must precisely adjust the weights to achieve H(x) = x. While in
residual blocks, the only thing you need to do is setting all weights to zero. It
means F (x) = 0 and H(x) = x.

Second, it strengthens the gradient flow. One of the most serious difficulty to
train very deep CNNs is that gradient may vanish or explode during flowing from
deep layers to shallow ones. However, because of the connection between deep
layers and shallow ones established by shortcuts, the gradient can be directly
transferred without any loss, which avoids gradient vanishing or explosion and
accelerates learning process.

Third, it introduces multiscale receptive field. Now the input to every residual
block combines features from different layers’ output, which extracts features of
different complexity from different length of input signals. This kind of multiscale
learning corresponds to biological nature of human cognition.

3.2 Network Architecture

Based on the idea of residual learning discussed above, we construct a 1D CNN
network shown in Fig. 1a. The whole architecture stacks residual blocks with
different number of kernels. The basic structure of residual block is shown in Fig.
1b. It consists of two convolutional layers with batch-norm and relu activation,
and adds a shortcut connection from the input to the output of the second
layer. We have used the pre-activation version recommended in [14] which means
stacking layers in relu-bn-conv style. The only variable of each residual block is
the number of kernels.

The whole network starts with a first convolutional layer with 16 kernels.
Then there are three stacked residual blocks with 16 kernels and a max pooling
layer. Next, two stacked residual blocks with 32 kernels and another max pooling
layer followed. After each pooling we have 1×1 convolutional layer to transform
channels numbers for the convenience of shortcut connection because it is more
difficult to realize if the channel number of input and output differs. Finally, we
use global average pooling layer to unify the feature maps among all channels
and a softmax layer to get the probability for each class. All the convolutional
kernels are 1 × 3 in order to achieve more complicated model in small receptive
field.
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Fig. 1. (a) The structure of the whole network. N, T, C respectively represents number
of input samples, time points and channels. (b) Detailed design inside every Res Block.
The basic design follows [8]. The BN layer is prepositioned for better performance.

4 Saliency Map

A question well-worth researching in HAR is: where is the optimal position to
place sensors? Answering this question could help us in i) abandoning irrelevant
channels in order to achieve higher accuracy, ii) reducing the dimensions of the
input signals and improve the efficiency of both training and inferring, and iii)
reducing the obtrusiveness and hassle of wearing too many sensors which could
affect normal daily life.

There have been many works trying to find the answer by wearing sensors
on all potential positions, like the head, chest, upper arm, wrist, waist, thigh,
leg and ankle [5,16]. Then they trained different networks with all combinations
of sensors and compare the performances. The combination of sensors for model
with the best performance is considered as the optimal position.

However, this approach has obvious problems. First, it requires an extensive
research to train many different networks, which is time-consuming and cumber-
some. The number of combinations will also explode when the possible positions
increase. Second, the gaps between the best model and others are too small to
judge. In the experiment of [5], the thigh was considered to be the best place
with 99% accuracy. However, the model trained with sensors on chest and side
waist also achieved 98.5% and 98.34% respectively. It is hard to tell if this gap
is just because of noise or sensors on thigh is really better than other places.

Therefore, we use a method called Saliency Map. It is widely used in the
image classification field to visualize which part of input image contributes most
to the classification result. The core idea is to compute the gradient of classifi-
cation unit to input signals, as Eq. 2 shows.
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Fig. 2. Saliency Map for class Opendoor1. We computed Saliency Map for every sample
in this class and averaged them all in order to eliminate the effect of noise. Each channel
is associated with one sensor.

ω =
∂Sc

∂I
(2)

where Sc denotes the classification score for class c and I is the input signal. ω
has the same dimensionality with input signal. It can be seen as the extent that
how the scores will change along with input signal. From another perspective, it
can also be considered as weights applied on inputs. If the weight is large, even
small changes in input signal will result in big difference so we can say the result
is sensitive to these channels and vice versa.

In practice, the dimensionality of the saliency map for a single sample is
T × C. T denotes the length of time series and C is number of channels. We
add up the matrix along vertical axis because time length can not be treated
separately. In the end, we obtain an array whose length is the same as the number
of channels. If plotted, we can see peaks and valleys, like the ones in Fig. 2.

It is worth noting that a single sample has randomness, so the Saliency Map
generated will be affected by noise. Therefore, a stable Saliency Map should be
the average of abundant Saliency Maps generated by samples of the same class.

The values attached to each channel can be seen as the representation of
importance. Therefore, we can consider channels with top values as the most
important sensors. We have conducted more experiments in Sect. 5.5 to find out
how convincing these top channels are and what kind of benefits it could bring.

5 Experiment and Result

This section includes the introduction of the dataset we used and several tests
we conducted to prove the practicality of our theory.
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5.1 Dataset

The OPPORTUNITY Activity Recognition Dataset is one of the most popular
HAR datasets [3]. It originated from OPPORTUNITY challenge in 2010 and
is still used as benchmark test of many state-of-the-art structures. Overall, it
contains recordings of four subjects in a daily living scenario performing morn-
ing activities, with sensor-rich environment. We are focusing on Task B2 which
contains 18 classes. During the recordings, each subject performed a session five
times with activities of daily living (ADL) and one drill session. During each
ADL session, subjects perform the activities without any restriction, by follow-
ing a loose description of the overall actions to perform (i.e., checking ingredients
and utensils in the kitchen, preparing and drinking a coffee, preparing and eat-
ing a sandwich, cleaning up). During the drill sessions, subjects performed 20
repetitions of a predefined sorted set of 17 activities. The dataset contains about
6 hours of recordings in total.

We follow the mainstream training and testing setting to make it possible to
compare our work with famous and recent ones. It means training our network on
all five ADL sessions and drill session for the first subject and on ADL1, ADL2
and drill sessions for Subjects 2 and 3, reporting classification performance on a
testing set composed of ADL4 and ADL5 for Subjects 2 and 3. ADL3 sessions
for Subjects 2 and 3 are left for validation.

In terms of the sensor setting, we follow the OPPORTUNITY challenge
guidelines, taking into account only the on-body sensors. This includes 5 com-
mercial RS485-networked XSense inertial measurement units (IMU) included in
a custom-made motion jacket, 2 commercial InertiaCube3 inertial sensors located
on each foot and 12 Bluetooth acceleration sensors on the limbs. Each IMU is
composed of a 3D accelerometer, a 3D gyroscope and a 3D magnetic sensor,
offering multimodal sensor information. Each sensor axis is treated as an indi-
vidual channel, yielding an input space with a dimension of 113 channels. Since
raw data is continuous 1-dimensional time series signal with multiple channels
which is unable to be trained on, we have applied the data segmentation method
recommended in [3]. The sample rate of these sensors is 30 Hz and recommended
time window is 500 ms. It means each segmentation consists of 15 time points.
In conclusion, the raw data is turned into training data with N × 15 × 113
dimensionality.

One main problem of the OPPORTUNITY dataset is its unbalanced distri-
bution between different classes. For example, NULL class dominates the whole
dataset with more than 80% but Open Drawer 1 - the minimum class, only occu-
pies 1%. It has some risky disadvantages. The whole model will be very easily
overfitting on small classes but is not showing any evidences since NULL class
dominates the most. We will try to discuss and ease this unbalanced feature in
Sect. 5.4.

5.2 Experiment Parameters

The whole network is trained on single MacBook Pro with 8 Intel Core i9 pro-
cessors and AMD Radeon Pro 5000M. Our training uses mini-batch gradient
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Table 1. Comparison of NF, parameters, and FLOPs of our ResNet-like structure and
four baseline networks on OPPORTUNITY dataset. The metrics with a “*” mean they
are not reported in the original paper and we do the computation by ourselves.

NF Parameters FLOPs

Yang et al. 2015 85.1 0.912M* 1.85M*

Ordonez and Roggen, 2016 88.3 7.44M 54.58M*

Tang et al. 2020 baseline 86.1 3.2M 41.9M

Tang et al. 2020 simplified 84.5 0.42M 13.78M

Our ResNet-like structure 89.2 0.024M 0.25M

descent with 0.9 momentum and 256 batch size. The learning rate is set as 0.001
initially and divided by 10 when plateau. We have tested many other hyperpa-
rameters and ended up choosing this group that worked best. Since the selection
of parameters is not the main topic of this work, we don’t do more demonstration
and discussion.

5.3 Performance

The results of our ResNet-like structure and four baseline networks on OPPOR-
TUNITY dataset are shown in Table 1. We have chosen two most famous work
[6,26] and one most recent method [22]. Following [6], normalized F-measure(NF)
is used to evaluate the performance.

From the comparison, we can see that our ResNet-like structure performs bet-
ter than all four baselines with a significant reduction in parameters and FLOPs.
Actually, there has already been a trend to explore more efficient networks while
keeping the performance stable, reducing parameters by more than ten times.
However, there is still a significant gap in computational complexity between our
network and very recent work. We attribute this significant reduction to several
factors. First, we found that most of the previous works treated the data format
as 2-dimensional map and only did convolutions on time axis, leaving channels
unchanged. It means keeping 113 channels throughout the whole network, which
is obviously a burden. Like in [26], the first layer does 1 × 5 unpadded convolu-
tion to the input signals, changing it from N × 113 × 30 into N × 113 × 26 × 50.
However, in our network, we treat channels of sensors and ‘channels’ of kernels
the same, which is very different from the mentioned method. Our first layer
transforms input data from N × 15 × 113 into N × 15 × 16, which can be seen
as the rearrangement of different sensors’ signals. The different ways to treat
two kinds of channels lead to the significant reduction of parameter numbers.
Second, we got rid of the fully connected (FC) layers and use global average
pooling [14] instead. FCs is notorious about the explosion of parameters and we
find that a network without them for HAR, like in many other fields, can still
achieve equivalent performance. Finally, the residual block makes learning easier
as explained in Sect. 3.1, so that we can use very few kernels compared with
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Table 2. Comparison between the same network trained with different setting of train-
ing dataset.

Part with
NULL

Part without
NULL

Full with
NULL

Full without
NULL

Yang et al. 2015 89.2 77.3 93.7 90.1

previous works while achieving same performance. We use 16 and 32 kernels
here which is significantly reduced from 128 [6], 60 [15] and 64 [22].

5.4 Discussion of Unbalance

Fig. 3. Left: Confusion matrix of the network trained with full data. Right: Confusion
matrix of the network trained with partial data

Besides comparing our network with state-of-the-art works in a mainstream
training setting for OPPORTUNITY, we have conducted several more exper-
iments with different setting. We remove NULL class to see more clearly what
happens inside small classes. We also have tried training on the whole dataset
with and without NULL class, applying train-val-test split by 8-1-1, to see if
the increasing data will affect the performance of same model. The results are
shown in Table 2. The confusion matrix for part without NULL and full without
NULL is shown in Fig. 3 for more detailed discussion.

From the results, we can see that both in part dataset and full dataset, if
NULL class is discarded, the performance drops at different level. This provides
efficient evidence for the problem mentioned before: the unbalanced distribution
of different classes in OPPORTUNITY. After discarding the dominant NULL
class, the problem of lacking data for some small classes emerges. That is why the
performance drops. We can also see that the network trained with full dataset
has a relative small margin. That is because full dataset has more data which
eases the overfitting problem, especially for some small classes.
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Fig. 4. Saliency Maps for all 17 activities in OPPORTUNITY, Open door1’s is zoomed
in for detailed observation and explanation.

When we conducted a parallel comparison between full and part dataset,
the performance is improved by 4.5% when with NULL and 13% when without.
It means obviously that providing more data can greatly enhance the network,
especially when there is strong overfitting in original network. It also provides
the evidence that current network structure is complex enough and what we
need is to collect more data for improvement.

When it comes to the confusion matrix, we found that network trained with
part dataset does not perform very well. Some samples will be misclassified
as any class which means the network has not learnt an appropriate feature
representation for the correct class. At the same time, the network trained with
full dataset performs very well. The misclassification mainly happens in block
diagonal matrix, which means the correct class and output class has just nuance.
It means the network has learnt deep features but these features are not strong
enough to classify between these very close classes. The possible improvement
method should be more complicated network structure or new technical idea.

5.5 Saliency Map Usage

As discussed above, the Saliency Map for each activity class in OPPORTUNITY
appears to be a curve with 113 points after processing. Each point is correspond-
ing to one channel of a sensor and the value is considered to be the importance
of this channel to the final result.

During experiments, we computed Saliency Map for every activity class and
showed it in Fig. 4. First of all, let’s take a look from big picture. Each map
has clear peaks and valleys, which means we can easily extract channels with
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Table 3. The top 10 and bottom 10 indexes from the saliency map for class 1 - open
door1 and their corresponding sensors. The correspondence and positions of the sensors
or other information can be found in [3].

Top 10 maximum Bottom 10 minimum

Index Corresponding sensor Index Corresponding sensor

62 RLA mag X 15 LH acc Y

40 BACK acc Z 112 R-Shoe AngVelNavFrame Y

56 RLA acc X 97 L-Shoe AngVelNavFrame Y

55 RUA mag Z 108 R-Shoe AngVelNavFrame X

54 RUA mag Y 113 R-Shoe AngVelNavFrame Z

53 RUA mag X 75 LLA acc Y

44 BACK mag X 94 L-Shoe AngVelNavFrame X

84 L-Shoe Eu Y 96 L-Shoe AngVelNavFrame Y

99 R-Shoe Eu X 77 LLA gyro X

100 R-Shoe Eu Y 92 R-Shoe AngVelNavFrame X

Table 4. The same network structure with same learning schedule trained with differ-
ent setting of input channels

How many channels used Performance (NF) Parameters in total

All 113 91.6 24594

Top 20 88.1 19650

Bottom 20 57.6 19650

high or low importance. Another interesting fact is that similar activities have
similar patterns, particularly obvious are the map for Open Dishwasher and
Close Dishwasher. It makes sense because in similar activities, such as opening
or closing something, high importance should be given to same sensors, which is
exactly what we have observed.

Then we take a step closer to analyze the information given by every single
map. Because of the limited page length, we can not give each map a detailed
explanation. Therefore, we mainly made detailed explanation for Activity 1:
Open Door1, and other maps can be further explored in the same way.

To check if the values of each point has any realistic meaning, we cut out
the top 10 channels with most importance and bottom 10 with least. The index
numbers and corresponding sensors are shown in Table 3.

From Table 3, we can see that top 10 sensors mainly consist of sensors on
right hand (RUA RLA) and on back (BACK), especially magnetic. It is reason-
able since the key to opening the door is the movement of the right hand and
the rotation of the waist. It doesn’t matter what the left hand is doing or the
state of the lower body. At the same time, there are some sensors about left



ResNet-Like CNN Architecture and Saliency Map 141

hand in bottom 10 sensors which means signals related to left hands have little
effect on classification, which is the same result as above. Besides, nearly all
AngVelNavFrame sensors are on bottom 10 which means this kind of sensor is
all useless for classification. AngVelNavFrame, according to its description in [3],
represents orientation of the sensor with respect to a world coordinate system
in quaternions. It is a useless feature beyond any doubts, because nobody cares
which direction I’m heading when I open a door.

In order to further verify our theory, we average maps for every activity to
generate the final Saliency Map for this whole dataset. Then we extract top 20
channels with highest values and bottom 20 channels as well. We have trained
three different networks separately with all 113 channels, top 20 channels and
bottom channels.

The results are shown in Table 4.
According to results, the performance of the whole model just drops by 3%

when we choose top 20 channels as inputs instead of whole 113, while the param-
eters are reduced by 20%. It means that we must have discarded most useless
channels and only the channels with strong ability to classify between different
classes remain, significantly improving the efficiency of learning useful features.

At the same time, we observe that network trained with 20 top and 20 bottom
have same network structure and same number of parameters but end up with
totally different performance (88.1% and 57.6%). It provides the evidence of
the assumption that channels with larger values on Saliency Map have stronger
classification ability again.

It is worth noting that even the network trained with 20 bottom channels
has stronger classification ability compared to empty model, which means there
are still some information inside the channels which are discarded.

In conclusion, the values of Saliency Map can indeed reflect the importance
of the corresponding sensor. Depending on the results of Saliency Map towards
whole dataset, we can get direct feedback about which channels are most impor-
tant. Therefore, dimensional reduction can be done by reserving channels with
highest values and dropping the others. The optimal positions or sensors could
also be found by directly comparing the values inside the Saliency Map.

6 Conclusion and Future Work

In this paper, we proposed a new ResNet-like CNN structure for HAR tasks.
This novel network takes advantage of residual learning and achieves state-of-
the-art performance with significant parameters and computational complexity
reduction. The improvement can be attributed to three factors: i) a different
processing method towards sensor channel and kernel channel, ii) removing fc
layers, and iii) making kernel numbers smaller using residual learning. Another
contribution of our work is the application of Saliency Map in HAR model. Using
this method, we can visualize the importance of every input channel, which is
corresponding to actual sensors wore on different positions. Based on the Saliency
Map, we can visualize the importance of each sensor and conduct further work
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like dimension reduction to improve computational efficiency or find the optimal
position with the largest value.

In our experiments, we demonstrated the performance of the proposed
ResNet-like structure and compared it to other state-of-the-art works to prove its
advantages. We also conducted a contrast test to show that the usage of Saliency
Map can really benefit the network. Therefore, we believe that a ResNet-like
structure can serve as a competitive structure of feature learning and classifica-
tion for HAR problems and Saliency Map will serve as another useful tool.

For future work, there are two main ways to proceed. First, we will keep
exploring the application of more advanced CNN network architecture on HAR
tasks, like DenseNet, MobileNet, and others. Second, since the usefulness of
Saliency Map is verified, a more complicated system should be designed to auto-
matically realize the dimensional reduction work, like reserving the top 20 chan-
nels. We would also like to develop our novel network to specific applications of
Physical Therapy to test the robustness on actual application scenarios.
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