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As automated and autonomous systems become
more widely available, the ability to integrate them into
environments seamlessly becomes more important.
One cognitive construct that can predict the use, mis-
use, and disuse of automated and autonomous systems is
trust that a user has in the system. The literature has
explored not only the predictive nature of trust but also
the ways in which it can be evaluated. As a result, various
measures, such as physiological and behavioral meas-
ures, have been proposed as ways to evaluate trust in
real-time. However, inherent differences in the mea-
surement approaches (e.g., task dependencies and
timescales) raise questions about whether the use of
these approaches will converge upon each other. If they
do, then the selection of any given proven approach to
trust assessment may not matter. However, if they do
not converge, it raises questions about the ability of
these measures to assess trust equally and whether
discrepancies are attributable to discriminant validity or
other factors. The present study used various trust
assessment techniques for passengers in a self-driving
golf-cart. We find little to no convergence across
measures, raising questions that need to be addressed in
future research.
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Remarkable advances have been made in self-
driving vehicle technology in recent years.
While these vehicles fall short of what names

like “full self-driving” insinuate (i.e., they are
not autonomous), their high level of automation
makes it such that the human in the “driver’s
seat” can be largely uninvolved. As these ve-
hicles are used in increasingly complex envi-
ronments, safe and appropriate use must be
prioritized. One of the greatest predictors of the
safe and appropriate use of a system is an un-
derstanding of the operator’s trust in that system
(de Visser et al., 2020; Dzindolet et al., 2003, p.
200; Hancock et al., 2020; Wiczorek & Meyer,
2019). Trust is a complex, dynamic attitude that
consists of initial learned, situational, and dis-
positional trust (Hoff & Bashir, 2015; Lee &
See, 2004). It is not simply that greater levels of
trust result in safer use of a system, but rather
that appropriately calibrated trust is needed to
ensure that users are not using the systems in
a way that is unsafe.

Users who place a level of trust in the system
which is warranted by the system’s actual capa-
bilities (i.e., trustworthiness) are said to be cali-
brated in their trust (Estepp et al., 2018; Kraus
et al., 2019). Miscalibrated users, on the other
hand, can either overtrust or undertrust a system.
Overtrust exists when one’s trust in the system
exceeds what is warranted by the system’s actual
capabilities (M. S. Cohen et al., 1997; Robinette
et al., 2016). This overtrust can be pernicious in
that users can become complacent and fail to
provide appropriate supervisory control over the
system (Merritt et al., 2019; Wickens et al., 2015),
which can lead to degraded situation awareness,
failure to detect system errors, and worse overall
human–machine team performance (Manzey
et al., 2012; Sebok & Wickens, 2017). Un-
settling real-world examples of overtrust can be
seen in images of drivers asleep behind the wheel
of their vehicle while in self-driving mode.
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Undertrust refers to instances wherein
a user’s trust in a system is less than what the
system’s capabilities warrant (de Visser et al.,
2020; Kohn et al., 2018). Undertrust can result in
failure to accept and adopt technology
(Ghazizadeh et al., 2012; Matsuyama et al.,
2021; Zhang et al., 2019) or disuse of a sys-
tem after it has already been adopted (Dzindolet
et al., 2003; Parasuraman & Riley, 1997). Dis-
trust is similar to undertrust; however, the
principal difference is that distrust can be war-
ranted (Mirnig et al., 2016). In fact, research has
suggested that trust and distrust represent two
distinct constructs (Kramer, 1999; Lewicki et al.,
1998; Tenhundfeld et al., 2019).

Under-reliance, be it caused by undertrust or
distrust, can present an issue if it is presupposed
that the system would otherwise provide a per-
formance or safety benefit to the user. As such,
product designers and developers may have an
interest in working to repair trust through ap-
proaches like having the system apologize
(Fratczak et al., 2021; Kim & Song, 2021),
increasing its transparency (Hussein et al., 2020;
Yang et al., 2017), or even reassuring the user of
its (the system’s) proficiency (Israelsen &
Ahmed, 2019). However, these repair ap-
proaches can only be implemented if distrust or
undertrust can be detected. What is more, the
efficacy of these approaches may be tied to the
actual timing of the repair strategy (Robinette
et al., 2015). It, therefore, seems obvious that to
promote highly efficacious human-automation
interaction, systems need the ability to detect, in
real-time, changes in a user’s trust.

Humans are inherently good at inferring in-
tention, state of mind, and emotions from both
verbal and non-verbal social cues. While a sys-
tem could routinely ask its user to evaluate his/
her trust, there are potential methodological
concerns (e.g., anchoring and response bias) in
addition to concerns over whether such a re-
dundant request may be seen as an annoying
behavior which could impact the use of such
a system (Segura et al., 2012). In an effort to
develop a real-time assessment of trust, research
has examined the utility of physiological and
behavioral measures such as heart rate (Khalid
et al., 2016; Mitkidis et al., 2015; Perello-March
et al., 2022; Tolston et al., 2018), galvanic skin

response (Akash et al., 2018; Chen et al., 2015),
interventions (Tenhundfeld et al., 2019, 2020),
monitoring behaviors (Bahner et al., 2008;
Bailey & Scerbo, 2007; Banks et al., 2018;
Endsley, 2017), and eye-tracking (Hergeth et al.,
2015; Lu & Sarter, 2019).

It is worth noting that these trust assessment
techniques are not directly assessing trust but
rather believed correlate with trust. In the case of
behavioral measures such as interventions,
monitoring behaviors, and eye tracking, each is
believed to be downstream of trust such that low
trust may lead to more frequent or earlier in-
terventions and monitoring/verification behav-
iors (Bahner et al., 2008; Tenhundfeld et al.,
2019, 2020; Walker et al., 2018). The idea is that
someone who trusts the vehicle less will be more
likely to take over control in the face of un-
certainty or will be more directly engaged in the
primary task of supervisory control. Similarly,
physiological monitoring of things like heart
rate, heart rate variability, and galvanic skin
response are all believed to be directly influ-
enced through trust by a couple of mechanisms.
The first mechanism wherein changes in trust
would be expected in the physiological data is
through stress. Each of these aforementioned
variables has been shown to be a part of the
human stress response (Arsalan & Majid, 2021;
Nickel & Nachreiner, 2003; Thayer et al., 2012).
The belief is that as trust decreases, the stress
associated with reliance on an automated system
increases, and as such, so too do the physio-
logical indicators of stress. The second proposed
mechanism would be through an individual’s
workload. In cases of high trust, there is more
likely to be complacency and the failure to
monitor the automated system (Bahner et al.,
2008; Merritt et al., 2019; Parasuraman &
Manzey, 2010; Sauer et al., 2016). On the
other hand, in instances where there is low trust
in a system, the individual will likely be more
engaged in the supervisory control tasks re-
quired of him/her, resulting in higher task load
and subsequent increases in workload. This
increase in workload correlates with changes to
physiological metrics like heart rate and heart
rate variability (Eilebrecht et al., 2012; Hoover
et al., 2012). However, it is important to note that
there are other factors that may affect user

4 March 2024 - Journal of Cognitive Engineering and Decision Making



workload, beyond trust. One’s assessment of
task demands may impact his/her workload. For
example, one may believe that driving becomes
a secondary task for which the automation is in
control, and thus the “driver” can engage in his/
her self-assigned primary task of engaging in
conversation, reading, texting, etc. Alterna-
tively, a driver may stay engaged in maintaining
supervisory control over the automation, if he/
she believes it to be the primary task, in a way
that increases workload regardless of his/her
trust in the system (Warm et al., 2008). This
introduces noise into the potential interpretation
of physiological assessments of trust if workload
is the main factor that contributes to the changes
in physiological response.

As detailed above, the use of non-subjective
measures can be useful for the real-time and real-
world assessment of trust. However, beyond the
fact that much of the research highlighting the
use of physiological and behavioral measures
relies on theoretical assumptions as to why they
are measures of trust, the reality is that there are
very few studies that compare these approaches
within a single study. This comparative analysis
is important for several reasons.

First, physiological and behavioral measures
of trust assess along different timescales than
subjective assessments. Whereas subjective as-
sessments are most frequently given following
a manipulation, physiological and behavioral
data are collected throughout the duration of an
interaction. While the data are not always
evaluated through dynamic modeling techni-
ques (Tenhundfeld et al., 2022), even aggregated
data (e.g., number of interventions and average
heart rate) are still an aggregation of data col-
lected over the course of the interaction, rather
than following the interaction. This different
timescale poses a potential theoretical problem
as trust is not a monolithic construct.

Trust itself can be broken into categories of
dispositional, situational, initial learned, and
dynamic learned (Hoff & Bashir, 2015). These
trust factors play a different role in reliance
strategies such that dispositional, situational,
and initial learned trust all affect one’s initial
reliance, whereas the use of a system informs
one’s dynamic learned trust which subsequently
impacts their reliance thereafter. As such, trust

assessment approaches that evaluate trust over
the course of an experiment, as you see with
behavioral and physiological measures, may be
capturing one’s shift from this pre-interaction
trust to his/her during-/post-interaction trust.
Because of this, complex interactions between,
for example, dispositional trust and system
performance may yield results that would oth-
erwise not be captured by a post-interaction
subjective questionnaire. So whereas measures
could converge, there would also be discrimi-
nant validity to each measure such that they are
unlikely to yield the same results because of the
unique variance they are explaining (Campbell
& Fiske, 1959). What is more, aggregated data
may obfuscate actual shifts in user trust as the
shifts in trust may occur following a series of
interactions, which then get averaged with pre-
shift trust (thereby dampening the effect).

For these reasons, it is imperative that com-
parative analyses be done on the different ap-
proaches to trust assessment. If we are to accept
that the measurements used are all assessing trust,
it is critical to understand how results may vary as
a function of the measurement approach. Because
trust is not a monolithic construct, the field must
understand how different measurement ap-
proaches are mapping onto the multidimension-
ality of trust. The first step, however, is to see
whether there are even disparate results as
a function of measurement used. If there is a dis-
agreement between the results from different
measurements, this would suggest that each
measure is uniquely assessing different facets of
trust. It would therefore be necessary for future
research to understand the nuance of how different
timescales and measurement approaches map onto
the multidimensionality of trust as a construct.
Additionally, this would also warrant more careful
consideration of the measurement approach used
for any given study, as different measurement
approaches may yield different results. If, on the
other hand, there is complete alignment between
results, regardless of the measurement technique
used, this would suggest that researchers would be
able to select whichever technique best fits within
their paradigm as the results would be the same.

Ultimately, the understanding of how these
different trust assessment techniques map onto
trust is not only important for advancing theory
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but also for the application of trust assessment in
the “real world.” Recently, there has been
consideration about ways in which to assess trust
in the “real world” (Dorton & Harper, 2022;
Tenhundfeld et al., 2022). Part of this push has
focused on ways in which to assess trust in non-
intrusive ways that allow for naturalistic inter-
actions between the human and automation (i.e.,
not simply relying on subjective assessments).
This push makes it all the more imperative that
there is a comprehensive understanding of the
alignment between results which approach trust
assessment differently.

For a comparative analysis to be successful,
different assessment techniques must be col-
lected within the same study. We have therefore
run a study in which physiological, behavioral,
and subjective self-report measures are used, to
assess trust of participants interacting with an
autonomous golf-cart. Some of the techniques
we used have been routinely relied upon for trust
assessment, such as subjective self-reports
(Brown & Galster, 2004; Foroughi et al.,
2021; Seet et al., 2022; Wojton et al., 2020),
heart rate (Mitkidis et al., 2015; Tolston et al.,
2018), and monitoring behaviors (Bailey &
Scerbo, 2007; Ferraro et al., 2018;
Tenhundfeld et al., 2019). However, we also
selected measures that have been linked to trust
through being measures of stress but have not
had the same breadth of use in empirical studies,
such as heart-rate variability (HRV) (Petersen
et al., 2019) and displacement behaviors
(Fratczak et al., 2021). Inclusion of these
measures also allows for exploratory analyses to
be run which can assess these proposed meas-
ures. This sort of exploratory analysis can serve
to evaluate whether proposed approaches like
HRV and displacement behaviors are in fact
aligning with other measures of trust, even
though they are less substantiated. If these
measures do converge with more frequently
used measures, they may represent additional,
non-invasive, trust assessment techniques that
could be used by practitioners (Tenhundfeld
et al., 2022).

By using an autonomous golf-cart, we are
able to assess trust in an ecologically valid way
that may prove beneficial for researchers and
practitioners alike (Tenhundfeld et al., 2022).

The use of a self-driving golf cart is compara-
tively novel to the literature which has relied
upon self-driving cars (de Visser et al., 2023;
Dikmen & Burns, 2016; Endsley, 2017;
Koskinen et al., 2019; Morando et al., 2020;
Tenhundfeld et al., 2019; Tomzcak et al., 2019).
However, this golf cart provides a real-world
analogue to the experience of a car, while si-
multaneously giving the researchers greater
control over vehicle behaviors and participant
safety. While negligible, this golf cart also
provides a degree of risk that is not found in
a laboratory environment, that is believed nec-
essary for the formulation of trust (Li et al.,
2019), and, as such, is most likely to manifest
differences in physiological and behavioral in-
dicators of trust. If there is convergence across
the measures used, this would suggest that the
differing timescales inherent with various trust
assessment approaches may not be relevant
when considering which approach to use. Al-
ternatively, if there is a lack of convergence
across measures, this suggests there needs to be
further exploration into the nature of trust as-
sessment, and greater consideration should be
paid to measures used when assessing trust.

Methods

Participants and Recruitment

A total of 27 participants were recruited at
James Madison University (JMU) by faculty
members associated with the project through
recruitment emails to school Listserv and word
of mouth. The call for participants stated, “the
purpose of this study is to better understand how
participants perceive trust and reliability in au-
tonomous vehicles before and after riding in
such a vehicle” and “… along with surveys and
interview questions, we will assess what aspects
of the ride were enjoyable and/or potentially
stressful for you.” An a priori power analysis
indicated that we needed 29 subjects in order to
adequately power a study with an expected
correlation coefficient of .5 which is the rec-
ommended minimum threshold for assessing
convergent validity, although others advocate
for a much higher correlation (Cheah et al.,
2018). A total of 58 persons completed an
“interest form” to schedule an initial meeting
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and experimental time with the investigators of
which 27 of these persons attended the meeting
and completed the study. The remaining par-
ticipants never followed up to meet with the
investigators. No one dropped out of the study
after meeting with the investigator. At their
initial meeting, the participants were advised
regarding the research purpose, procedures, and
safety protocols. The IRB consent form required
several things to be listed regarding the features/
safety of the vehicle:

- “During the ride, a safety supervisor will be
present in the back of the vehicle. The super-
visor will be watching the vehicle’s path for any
deviations or potential objects in its way. If
something is observed, then a ‘kill switch’ will
be manually thrown that will bring the vehicle
to a halt within approximately 2 seconds. The
vehicle will not resume until the supervisor
throws the switch again.”

- “The vehicle is programmed to operate at
a slow rate approximately the speed of a brisk
walk. It cannot be commanded to move faster
in autonomous mode.”

- “The vehicle is equipped with a 3D lidar system
that can detect objects in front of the vehicle. It
is programmed to stop in the event an object is
in its path and resume once the object has been
removed.”

“The vehicle will only operate on known
and pre-mapped paths on the JMU campus
that have been previously tested by the
research team.”

These meetings generally occurred in a fac-
ulty member’s office. Participants were not
compensated. This study was approved by the
IRB and followed ethical research guidelines.

Testbed

The JMUAutonomous Vehicle1 (Figure 1) is
a modified EZ-Go Golf Cart that has been
adapted to autonomous navigation by controlling
its electronic braking and throttle through
custom-designed circuit boards and by utilizing
an electric DC motor to automatically drive/turn
the steering wheel. These electronic controls are
governed by a custom Robot Operation System

(ROS) program that utilizes as inputs a 3-D Li-
DAR for localization and obstacle detection,
electronic sensors for steering column position,
and user-selected destination from the GUI. For
additional technical details on the project, please
see El-Tawab, Sprague, and Mufti (2020); El-
Tawab, Sprague, and Stewart, et al. (2020).

The autonomous vehicle operates on defined
routes that are pre-mapped with a 3-D LiDAR
with known locations as labeled in Figure 2.
Given these locations, the vehicle can autono-
mously determine routes between destinations,
execute those routes at a fixed speed, and stop
for large obstacles such as people and vehicles.
The vehicle operates at speeds of <3 MPH
(4.8 KPH), which is generally the speed of
a brisk walk. While the vehicle can stop for
obstacles (vehicles, people, etc.), it cannot au-
tonomously navigate around them. It will either
wait until the obstacle has moved or the cart is
manually driven around the obstacle.

Test Procedures

After receiving informed consent, the par-
ticipants were provided the Automation Induced
Complacency Potential – Revised survey
(AICP-R) (Merritt et al., 2019) pre-ride and then
a wearable device measuring heart rate (HR) and
heart rate variability (HRV) (Maxim Integrated
REFDES2103) (Figure 3) was placed on their
wrist to monitor heart rate. The AICP-R consists
of 10 questions evaluated using a 5-point Likert
scale ranging from “strongly disagree” to
“strongly agree.” Past research has suggested

Figure 1. Autonomous vehicle testbed.
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that HRV and HR may increase when a user’s
workload is higher due to lower trust resulting in
a greater degree of monitoring of the system
(Khalid et al., 2016; Mitkidis et al., 2015;
Perello-March et al., 2022; Tolston et al., 2018).
Additionally, these measures are indications of
stress which may be caused by decreased levels
of trust (Reimer et al., 2010, 2016). After ver-
ifying the wearable device was operational, the
faculty member and participant proceeded out of
the building to the waiting autonomous vehicle
that was in a courtyard outside the JMU EnGeo
Building (Figure 4).

The participant was asked to sit in the pas-
senger seat of the vehicle and then was provided
a short demo on how to operate the graphical
user interface (GUI). We chose to have the
participant sit in the passenger seat for three
reasons. First, we wanted participants to have
ready access to the GUI which was installed on
the passenger side of the vehicle. Secondly, for
participant safety, we did not want them to be
able to accidentally touch one of the pedals or
get their hands caught in the steering wheel
when it was being turned by the actuator. Finally,
because we wanted the user’s interaction with
the vehicle to mimic the experience of a fully
autonomous vehicle, we did not want the par-
ticipants to have input beyond telling the vehicle

to pull over (mechanism discussed below).
Through the interface, a passenger can select
a destination around the JMU East Campus area
that the vehicle will autonomously navigate to.
Upon reaching the destination, the passenger can
select a new location. Also, the participants were

Figure 2. Graphical User Interface. Note. GUI for autonomous vehicle showing selectable destinations, vehicle
position, destination, and pull-over controls.

Figure 3. Maxim Integrated Wearable Device. Note.
The Maxim Integrated MAXREFDES103 was used to
detect user HR and HRV throughout the experiment.
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shown the presence of a “Pullover” button that
would halt the vehicle en route. The destination
labels utilized in the GUI were fictional in that
the labels did not actually correspond to what
was in that location (i.e., there was no movie
theater at the destination labeled “movie”);
however, they represented available stopping
points around the larger campus area.

After completing the demonstration and an-
swering any questions, the participants were in-
structed to complete two trips: one to a specific
location on campus (often to “mall” as that one
was farthest) and then return to the starting lo-
cation “home,” and the second trip was a “free
choice” that could be to any destination available
that the participant desired along the known routes.
Throughout the trips, one of the principal inves-
tigators walked behind the vehicle as a “safety
officer” to manually stop the vehicle to prevent
any unanticipated collisions, if needed (see
Figure 4).While the passengerwas told this person
was present, they were instructed to envision
themselves as riding alone in the vehicle, and in
general, the “safety officer” would not interact
with them unless necessary. This additional safety
measure was necessary as the experimental times
varied throughout the week and interactions
among other students, facilities vehicles, and on-
campus delivery robots were possible. While the
autonomous vehicle has a forward-looking Li-
DAR, and can automatically stop in many

situations, the researchers were unsure if it would
act reliably given the many different testing pro-
cedures and additional precautions that were
added. No collisions between the autonomous
vehicle and other objects/vehicles occurred during
the experimental period. Following their ride in the
cart, participants were asked to fill out the Trust of
Automated Systems Test (TOAST) (Wojton et al.,
2020) and were asked a series of follow-up
questions. The TOAST is assessed using a 7-
point Likert scale ranging from “strongly dis-
agree” to “strongly agree.” Participants were then
thanked and sent on their way.

After all data had been collected, researchers
went through and coded for specific events in
each video. These videos were captured by two
cameras, one facing forward and mounted on the
front of the vehicle and the second mounted
inside the vehicle facing the participant. These
events fell into three different categories: ob-
stacles, GUI interaction, and other participant
behaviors (Table 1). We use the term obstacles to
reference any potential impedance to the travel
of the cart, but that is not to say that the cart
needed to slow down for the obstacles coded.
Said another way, obstacles were those things
which one may reasonably assume the cart may
have to alter its course or speed to deal with but
that does not mean that the cart in fact had to do
so. These obstacles were truly naturalistic (i.e.,
were not designated to occur at a specific time or
place). Participants experienced an average of
just over 17 obstacles during the course of the
ride. While the GUI did not present information
from the cart’s sensors (Figure 2), we believed
that coding for glances at the GUI still repre-
sented a facet of supervisory control for two
reasons. First, the GUI still presented in-
formation about the cart’s projected path and
participants may have been looking to see if
there were indications that the path had changed.
Secondly, the GUI housed the “pullover” button,
which participants may have been looking to-
ward in order to cue the necessary action should
they feel they needed to hit it (Gottlieb, 2007).
This sort of “verification” behavior of looking at
a central GUI has been used as a measure of trust/
distrust in other self-driving vehicle research
(Tenhundfeld et al., 2019) and stems from an
individual’s level of trust and subsequent

Figure 4. Testbed environment in action. Note. The
figure shows the JMU autonomous vehicle traveling
on a walking path with a “safety officer” following to
manually turn off the vehicle if needed.
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complacency when interacting with the system
(Bahner et al., 2008). The idea is that those
who trust a system more are more likely to
become complacent, and thus monitor/verify
system behavior less. Additional participant
“displacement” behaviors were coded, as these
are indicators of stress response, and are used
to evaluate stress in humans (Troisi, 2002). The
term displacement behaviors is used to cate-
gorize behaviors that occur in circumstances in
which they would not be otherwise expected
(McFarland, 1966; Troisi, 2002). Because of
the relationship between stress and trust, these
displacement behaviors were believed to be
elicited from low trusting individuals who
experienced stress in the face of the uncertainty
evoked by not trusting the system (Morris
et al., 2017; Reimer et al., 2010, 2016). Ad-
ditionally, secondary task engagement behav-
iors (such as checking one’s phone) were
coded. These secondary task engagements
were coded because of the literature suggesting
that secondary task engagement is an in-
dication of complacency and overtrust in an
automated system (Manzey et al., 2012; Noble
et al., 2021). Each video was coded by three
researchers independently by identifying the
time that corresponded to each of the events.
From those researcher codes, an event was
determined to have happened at the earliest
timestamp given by a researcher, provided at
least one other researcher coded that event
within the following approximately 2 s, and it
had been at least 15 s since that type of event
had been coded for. We selected the earliest
timestamp as we wanted to reduce any

potential latency between the onset of physi-
ological identifiers and the potential behavioral
or obstacle event. This helped ensure that there
was an agreement amongst researchers and
avoided situations where the same event was
coded for at several different times depending
on researcher interpretations. This yielded
timestamped codes for every event which
could then be synchronized with the physio-
logical data.

To evaluate the physiological responses to
coded events, we looked at the percentage
change for the measure of interest from 5 s
before the coded event to 15 s after the coded
event. This is in line with previous research
which has relied upon a 20-s window following
an event (Waytz et al., 2014). We chose to shift
the 20-s window to include 5 s before the coded
event to account for the fact that there were
likely upcoming obstacles that the participants
were able to see before they came into view of
the outward-facing camera. Note that the
outward-facing camera was to be used by the
experimenters to record the trials so that they
could code events that happened in the world,
and the feed from the camera was not shown to
the subjects.

Results

Statistical analyses and data cleaning were
conducted in both Python and R (R Core Team,
2022) using functions from the tidyverse
(Wickham et al., 2019), lme4 (Bates et al.,
2015), emmeans (Lenth, 2022), effects (Fox
& Weisberg, 2018), ggplot2 (Wickham, 2016),
and base packages.

TABLE 1: The Categories, and Subsequent Qualifying Events, Coded for.

Obstacles GUI interaction Participant behaviors

- Food robots - Looking at the GUI - Bracing - Noticeable gasp
- Pedestrians - Interacting with the GUI - Glancing - Fidgeting
- Cars - Darting eyes - Touching his/her face
- Curves in the road - Noticeable/pronounced

exhale
- Messing with hands

- Construction - Talking to self
- Mouth movement (e.g., biting
lips and pursed lips)
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Physiological Assessment

Data Cleaning. Three subjects’ data were
omitted from the analyses because they did not
encounter any obstacles during their drives (N =
2) or was the only subject who encountered a car
(N = 1). Data from the remaining 24 participants
was subset into unique event windows, 50 s
intervals of time 25 s before and after partic-
ipants encountered an obstacle. Although the
length of the event window was arbitrary, it gave
us the opportunity to track changes in heart rate,
measured in beats per minute (BPM), that oc-
curred as participants saw, drove toward, en-
countered, and passed obstacles. We also
captured the time during the session (in seconds
since start) at which each event window was
recorded. This allowed us to track co-occurring
obstacles and control for drift in heart rate over
time. Finally, we captured the type of event that
participants encountered during each window:
curves in the road, pedestrians, and food robots.
All predictors were effect-coded, means-
centered, and scaled prior to analysis.

Statistical Control for Individual
Differences. Because physiological data is
prone to noise from individual differences, we
used a multilevel model to analyze our data. This
model included a random-effect structure that
statistically controlled for individual differences
in heart rate that may have occurred during the
experiment. Four possible random-effect struc-
tures were proposed that differed in their as-
sumptions. All of the models statistically
controlled for individual differences in resting
heart rate (i.e., heart rate intercept). Additional
models were developed to also control for in-
dividual differences in heart rate response to
obstacles (i.e., event window slope), changes in
heart rate throughout the study (i.e., time slope),
or both. AIC values (Akaike, 1973; see Table 2)
were used to identify the random-effect structure
that was most likely to have produced our data.
This random-effect structure was included in the
final model of heart rate response to automation.

Modeling Heart Rate Response to
Automation. Exploratory visualizations sug-
gested that fluctuations in heart rate could be

modeled using linear regression. Therefore,
a full-factorial multilevel linear model was fitted
to the data. This model included the event
window, time, and event type predictors in the
fixed-effect structure and the intercept, event
window slope, and time slope in the random-
effect structure.

This model indicated that subjects’ heart rate
changed when they encountered food robots but
not when they encountered curves in the road or
pedestrians (see 95% confidence intervals in
Table 3). This effect is illustrated by the negative
slopes in Figure 1: subjects’ heart rate was
higher when they first encountered a food robot
relative to when they passed it. The model in-
dicated that this change in heart rate became
slightly more pronounced over time (B = �.07,
SE = .02, t =�4.26), as seen across the panels of
Figure 5, even as overall heart rate remained
stable throughout the course of the experiment
(B = .84, SE = 1.51, t = .56).

Subjective Assessments. The time be-
tween when the cart started driving and when it
returned to the start/stop location took an average
of 620.56 s (SD = 134.25). The participants re-
ported an average overall score on the AICP-R of
3.552 (SD = .336), with averages for the alle-
viating workload (which assesses an individual’s
attitudes toward delegating tasks to automation in
order to alleviate workload) and monitoring
(which assesses an individual’s attitudes toward
the need to monitor automation when it is being
used) subscales of 4.024 (SD = .543) and 3.080
(SD = .370), respectively. Higher scores indicate
a greater propensity to delegate tasks to auto-
mation (alleviating workload subscale) and to not
monitor it (monitoring subscale), both of which
contribute to the complacency potential. There
was an average of 17.080 (SD = 7.810, range: 3–
34) obstacles coded for each participant during
the participant’s time in the cart. Notably, the cart
was perfect in avoiding all obstacles for every
participant. Participants reported very high levels
of trust in the system following their trial with an
average score on the TOAST of 5.893 (SD =
.466) (out of 7).
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There was no significant correlation between
complacency potential and participant trust, r
(25) = .206, p = .324, and BF10 = .393. While we
anticipated that the more experience a partici-
pant would have with the cart successfully
avoiding obstacles would elevate trust
(Tenhundfeld et al., 2019, 2020), the correlation
between numbers of obstacles encountered and
self-reported levels of trust, via the TOAST, was
not significant, r (25) = �.337, p = .100, and
BF10 = .896 (Figure 6).

Behavioral Assessments. Given that the
approach to obstacles represented a period of
uncertainty for which participants would be
more likely to display greater displacement
behaviors as well as verification behaviors
(glances at/interactions with the UI), we as-
sessed whether there was in fact a relationship.
There was a significant correlation between the
number of obstacles coded and the number of
behaviors coded, r (25) = .477, p = .016, and
BF10 = 3.907, as well as between the number of
obstacles coded and the number of glances at/
interactions with the user interface (UI), r (25) =
.543, p = .005, and BF10 = 10.234. Because it
was possible that this positive correlation could
be caused by a longer duration, such that trials
that lasted longer had a potentially greater
number of opportunities for obstacles, behav-
iors, and glances we evaluated whether this was

the case. To evaluate this, we standardized the
counts by averaging the counts and getting
a “count per minute” measure for obstacles,
behaviors, and glances at/interactions with the
UI. Doing this yielded even stronger results;
there was a significant correlation between the
number of obstacles coded (per minute) and the
number of behaviors coded (per minute), r
(25) = .531, p = .006, and BF10 = 8.480, as well
as between the number of obstacles coded and
the number of glances at/interactions with the
UI, r (25) = .618, p < .001, and BF10 = 41.788.
There was no correlation between duration and
obstacles, r (25) = .222, p = .287, and BF10 =
.424, duration and number of behaviors, r (25) =
.029, p = .892, and BF10 = .250, nor duration and
glances at/interactions with the UI, r
(25) = �.024, p = .908, and BF10 = .250.

Convergence Assessments. Given that
the displacement behaviors and UI glances/
interactions were thought to be indications of
stress which manifests in the face of low trust, we
assessed whether there was a relationship between
the number of these behaviors and the subjective
self-report of trust (Figure 7). There was no cor-
relation between self-reported trust (TOAST) and
the number of behaviors coded, r (25) = �.066,
p = .754, and BF10 = .260, nor was there any
correlation between self-reported trust and the
number of glances at/interactions with the UI, r
(25) = �.122, p = .561, and BF10 = .291. Given
that both the number of behaviors and number of
glances at/interactions with the UI are hypothe-
sized to be negatively correlated with trust, we
evaluated the convergence between these two
measures and found a significant correlation, r
(25) = .609, p = .001, and BF10 = 34.593.

There was no significant correlation between
participant scores on the monitoring subscale

TABLE 2: AIC Comparisons of Possible Model Random-Effect Structures.

Model AIC

Intercept 3499510
Intercept, event window slope 3490937
Intercept, time slope 3446890
Intercept, event window slope and time slope 3437710

Note. Because AIC values are grounded in the -2LL, lower values are indicative of a better fit.

TABLE 3: Event Window Slopes for Heart Rate as
a Function of Event Type.

Event type B SE 95% Confidence interval

Curves �.07 .27 [�.60, .46]
Food robots �.55 .27 [�1.08, �.01]
Pedestrians �.42 .27 [�.95, .11]
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(which is supposed to predict the frequency with
which an individual believes automated systems
should be monitored) and the number of times
they monitored the system by glancing at/
interacting with the UI, r (25) = �.179, p =
.391, and BF10 = .352.2

While there was not a difference between
BPM changes at baseline and those in response
to obstacles, BPM changes are still thought to
indirectly assess trust (Khalid et al., 2016). We
therefore assessed whether there was

a relationship between BPM changes and the
other subjective and behavioral indicators of
trust (Figure 8). There was no significant cor-
relation between the average BPM in response to
obstacles and self-reported trust (TOAST), r
(25) = .225, p = .279, and BF10 = .432, the
number of UI glances/interactions and average
BPM change in response to obstacles, r
(25) = �.039, p = .851, and BF10 = .252, or
number of displacement behaviors, r
(25) = �.043, p = .838, and BF10 = .253.

Figure 6. Scatterplots for self-reported trust. Note. Scatterplots between the number of obstacles encountered
and self-reported trust (left) as well as AICP-R and self-reported trust (right). A solid line is regressed upon the
data, and dashed lines represent the 95% CI for that regression line.

Figure 5. Heart rate during the event window changed as a function of event type over drive time. Note. Panels
represent consecutive time slices (s) throughout the drive; narrow error ribbons represent ± 1SE.

CONVERGENCE OF TRUST ASSESSMENT TECHNIQUES 13



Similarly, we compared HRV changes in re-
sponse to obstacles to the other subjective and
behavioral indicators of trust to see whether
there was an agreement amongst these different
approaches. There was no significant difference
between the average HRV in response to ob-
stacles and self-reported trust, r (25) = �.155,
p = .461, and BF10 = .321. While there was
a significant correlation, the Bayes Factors re-
ported only anecdotal evidence in favor of
a correlation between average HRV in response
to obstacles and the number of UI glances/
interactions, r (25) = .418, p = .038, and
BF10 = 1.922, and moderate in favor of the
correlation between average HRV in response to
obstacles and the number of displacement be-
haviors, r (25) = .475, p = .016, and BF10 =
3.768. Despite both heartrate and HRV being

thought to be predictive of trust, there was no
significant correlation between average BPM
change in response to obstacles and average
HRV change in response to obstacles, r (25) =
.051, p = .808, and BF10 = .255.

Discussion

The current study was a comparative analysis
of different trust assessment techniques. Various
trust measures have been used and proposed as
effective ways to evaluate one’s trust; however,
little research to date has explored their ability to
converge upon a single finding. Not only is trust
not a monolithic construct, but the different
assessment approaches also used by the field
rely on different assumptions and timescales for
assessment. As such, it is important to un-
derstand whether there is an agreement between

Figure 7. Scatterplots between behavioral and self-report measures used.Note. Scatterplots between the number
of UI glances/interactions and monitoring subscale of AICP-R (top-left), self-reported trust (top-middle),
number of obstacles encountered (top-right), and number of behaviors coded for (bottom-left), along with
scatterplots between the number of behaviors coded for and self-reported trust (bottom-middle) and number of
obstacles encountered (bottom-right). A solid line is regressed upon the data, and dashed lines represent the 95%
CI for that regression line.
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results for these different approaches as dispa-
rate results may arise in any given study as
a function of the assessment approach used.
Additionally, with new measures being pro-
posed or called for, careful consideration should
be paid to the ability of the measures to align
with existing approaches that are more empiri-
cally substantiated.

As such, we chose to use subjective self-
report, behavioral, and physiological data to
assess trust, each of which has a body of liter-
ature detailing its use for assessment of trust
(Ajenaghughrure et al., 2020; Akash et al., 2018;
Banks et al., 2018; Mitkidis et al., 2015; Sauer
et al., 2016; Schwarz et al., 2019; Thayer et al.,
2012; Tolston et al., 2018; Wang et al., 2018;

Figure 8. Scatterplots for physiological measures. Note. Scatterplots for trust, number of UI glances/inter-
actions, and behaviors, with BPM and HRV changes in response to obstacles in addition to scatter plot for the
relationship between HRVand BPM. A solid line is regressed upon the data, and dashed lines represent the 95%
CI for that regression line.
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Wojton et al., 2020). In this study, we selected
the TOAST for our subjective assessment
measure because of its good intrasubject re-
liability, which is needed for individual differ-
ences research (Wojton et al., 2020).
Additionally, we used the AICP-R scale to as-
sess participant complacency potential when
interacting with an automated system (Merritt
et al., 2019). For physiological data, we col-
lected heart rate and HRV. Heart rate has been
used to assess trust in multiple ways (Mitkidis
et al., 2015; Tolston et al., 2018); however, as
abovementioned, we used the approach of
Waytz et al. (2014), which involved evaluating
the physiological changes over a 20-s window
following an event. While the use of HRV has
not been used, to our knowledge, to assess trust,
it has been shown to correlate with stress and
workload (Nickel & Nachreiner, 2003; Thayer
et al., 2012), both of which are impacted by
one’s trust in and reliance on a system
(Parasuraman & Riley, 1997; Sauer et al., 2011),
and thus could be considered a non-invasive
approach to trust assessment (Tenhundfeld
et al., 2022). Finally, for behavioral measures,
we relied on checking/verification behaviors
(Bahner et al., 2008; Ezer et al., 2007;
Tenhundfeld et al., 2019), as well as the coding
of “displacement” behaviors which have been
shown to appear in response to stress (Burgoon
et al., 2021; E. J. Cohen et al., 2018;
Mohiyeddini et al., 2013; Mohiyeddini &
Semple, 2013; Troisi, 2002),but have also
been used in trust research (Fratczak et al., 2021;
Hald et al., 2019).

Contrary to our expectations, our data did not
show any real degree of convergence across
measures. In fact, there was moderate evidence in
favor of the null hypothesis (as evidenced byBayes
Factor values below .333) for the relationship
between an individual’s TOAST score and the UI
glances/interactions, behaviors, andHRV. The only
relationship for which there was strong evidence in
favor of a correlation was between the number of
UI glances/interactions and the number of coded
behaviors. There was even moderate evidence
against a relationship between BPM and HRV in
response to real-world obstacles.

There are several possible explanations for
this lack of convergence. The first possible

explanation is that some of these measures were
not actually assessing trust. Themeasure of heart
rate variability has not, to our knowledge, been
used before to assess trust in this way. While
there is a theoretical reason to believe HRV may
be able to provide some information about the
user’s trust, this is theoretical in nature and thus
it may simply be the case that HRV is not
a reliable way of assessing trust as there are other
factors which directly impact it (Fatisson et al.,
2016). This is supported by the fact that a more
well-recognized physiological measure of trust
(heart rate) did not correlate with HRV even on
the same timescale. Additionally, while there has
been some limited research on the use of dis-
placement behaviors as a trust assessment
technique (Fratczak et al., 2021; Hald et al.,
2019), there has been comparatively little re-
search validating it, and the displacement be-
haviors we used were different than those used
before. The displacement behaviors we selected
were deemed more relevant to the task at hand
and are well-established in the literature on
displacement behaviors (Troisi, 2002).

The second possible explanation for the lack
of convergence is the fact that these trust as-
sessment approaches represented fundamentally
different timescales. Whereas the subjective
assessment (TOAST) was administered after the
participant completed his/her drive, the physi-
ological and behavioral data were collected
throughout the experiment. As mentioned in the
introduction, these differing timescales present
problems for trust assessment. Surveys which
are administered after trials are complete only
collect trust data after the entirety of exposure to
the system. On the other hand, behavioral and
physiological data are collected throughout the
experiment and therefore may be picking up the
process of trust formation (more on this below).
Additionally, as evidenced by our analyses,
there are a variety of ways in which to analyze
physiological and behavioral data. Some ap-
proaches involve processing data continuously,
while others deal with the data in aggregate.

A third possible explanation is that, regard-
less of the timescales, there are different cate-
gories of trust (i.e., situational, dispositional,
and learned) which may be what is being as-
sessed by any given measure. Studies that have
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demonstrated an assessment technique to be
effective may be able to map the results onto
trust but would be unable to establish what
category of trust is being measured. Said another
way, if assessment A maps onto situational trust,
but assessment B maps onto learned trust, it is
appropriate to say that both assessment ap-
proaches measure trust, but they may vary in-
dependently from one another. This is in line
with existing research on construct and dis-
criminant validity and could explain the lack of
convergence between widely used measures of
trust like subjective assessments and monitoring
behaviors (Campbell & Fiske, 1959). In order to
ascertain whether these assessment techniques
are mapping onto the same aspect of trust,
comparative studies, like this one, are needed.

The fourth possible explanation for the lack of
convergence pertains to the methodology used
here. Because this paradigm had not been used
before, it is difficult to establish whether the null
results were paradigmatic or due to one of the
other abovementioned factors. There is some
evidence for this as there was nearly uniform high
trust on the subjective assessment (which admit-
tedly took the authors by surprise). This could
have been a function of either the recruitment (i.e.,
self-selection bias)/consent documentation or the
system’s performance.While positive news for the
developers of the system, this uniformity of trust
(at least in subjective assessment) means that there
may have been insufficient variability to truly tease
apart degrees of convergence in themeasures. This
may have been a function of the system perfor-
mance, the presence of a safety officer, or simply
the relatively little amount of time that the par-
ticipants spent interacting with the vehicle. Finally,
the nature of the paradigm was such that partic-
ipants were outside during the course of the ex-
periment. This means that they were exposed to
temperature/weather which may have impacted
the physiological measures in ways that would not
have affected subjective responses. Being outside
means that they were also subjected to passing
social interactions during which non-participants
may have been staring at the participant/cart as the
presence of an autonomous golf cart with various
sensors is novel and attention-grabbing. These
factors could have affected behavioral and phys-
iological data in ways that were not related to trust,

thereby making the data noisier and obfuscating
any results that may have otherwise been
detectable.

Ultimately, more research is needed in order to
understand the reasons that these data did not
converge. Future research should work to tease
apart the contributions of different timescales and
how these assessment approaches may map onto
the different components of trust, especially in
order to establish whether proposed approaches
actually do measure trust rather than some other
factor such as workload or general stress. This also
may be better done in an established paradigm in
which these various assessment techniques have
been reported to assess trust.

Conclusion

In conclusion, we ran a comparative and
exploratory analysis of different trust measure-
ment approaches. Had measures converged
upon one another, we would have had reason to
believe that the trust assessment selected for any
study would not matter all that much, as they
would be yielding the same result. However, we
found very little, to no, convergence across
measures. This suggests that certain measures
(e.g., HRVand displacement behaviors) may not
be a reliable assessment approach for trust, while
others may be task-dependent, measuring dif-
ferent components of trust, or results may differ
simply as a function of the timescales in which
these measurements were used. However, future
research should be done in a more controlled
environment that may be able to more concretely
establish whether there is an alignment between
these different trust assessment techniques. Such
efforts are needed in order to provide trust as-
sessment approaches for both researchers and
practitioners.
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